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SELF-SIMILAR PROBLEMS IN ELASTODYNAMICS
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School of Mathematics, University of Bath
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This paper presents a formulation of self-similar mixed boundary-value problems of elastodynamics that
is a natural extension of one already developed by the writer for elastostatic problems. By thus exposing
the analytical structure that is common to both the dynamic and static problems, the existence of
properties common to certain static and dynamic problems is explained, and further such properties are
derived. Common features of both two-dimensional and three-dimensional problems are brought out by
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436 J. R. WILLIS

reducing them to Hilbert problems, directly in two dimensions and by introducing the Radon transform
in three dimensions. Several applications of the theory are presented, typical problems involving the
indentation of a half-space by a conical or wedge-shaped indentor, and cracks expanding under the
influence of a non-uniform applied stress. More difficult problems, that have not before been formulated,
include dynamic indentation problems with adhesion, and problems of cracks expanding on interfaces
between dissimilar materials. A method of solution of such problems is presented and an example of each
type is worked out in detail.

The method of analysis hinges upon representations of the solutions of ‘unmixed’ self-similar problems
for half-spaces, which are obtained by use of an alternative to Cagniard’s technique whose application is
routine, even for an anisotropic half-space. The representations provide more general solutions of the
unmixed problems than were available previously. The main singularities, or ‘arrivals’, of the stress fields
are extracted from the representations; these expressions are new and should be useful for certain
problems in seismology. It is predicted, for instance, that a crack expanding on an interface can generate
a ‘conical wave’, that is, a region in which the singularity has a logarithmic component as well as a step
function, even in its P-wave arrival, which could not occur for a crack in a homogeneous medium,

The properties of the equations of elastodynamics that are employed are that they are linear, homo-
geneous and self-adjoint and the methods that are developed are equally applicable to any other system
with these properties.

1. INTRODUCTION

The main motivation behind the present work was to formulate and solve a class of mixed
boundary-value problems in elastodynamics, of which a representative is provided by a crack
expanding uniformly from a point under the action of a prescribed stress. Before this investigation,
the most general three-dimensional solution that was known was that of Burridge & Willis (1969),
for a crack of elliptical shape expanding under a uniform stress in an anisotropic medium. The
problem was solved, quite simply, by guessing the form of the relative displacement of the crack
faces and then demonstrating its correctness. This relative displacement has a simple form,
independent of the speed of the crack, and is the same as is obtained in the limit of a stationary
crack. The static limit had been investigated more generally by Willis (1968), for polynomial
loading of the crack, again by guessing the form of the relative displacement, but confirming its
validity by an entirely different set of manipulations.

Recently, Willis (19714, 1972) has developed a much more systematic approach to static
problems, which produces the former results in a rational way, and which also facilitates the
solution of some much more difficult problems involving a crack on an interface between dis-
similar materials. The present work comprises a generalization of this approach, to a class of
dynamic problems whose solutions are homogeneous functions of the time ¢ and position x; the
problem solved by Burridge & Willis (1969) falls into this category since the stresses are homo-
geneous functions of degree zero in (¢, x). The formulation of the dynamic problems reduces to
that already developed in the static case by the simple device of letting the density of the material
tend to zero and a unified approach, which exposes the common structural features of both the
dynamic and static problems, is thereby obtained. It follows immediately that the static result of
Willis (1968) can be generalized to the dynamic case. Also, at a deeper level, it becomes possible
for the first time to study dynamically expanding cracks on interfaces. Solutions of such problems
are expressed in terms of the solution of a certain Hilbert problem, which can be solved exactly
in the static limit and for which a procedure for developing systematic approximations to its
solution is outlined in the dynamic case.

Dual problems, typically involving the dynamic indentation of a half-space, either with or
without adhesion, can be formulated and solved similarly, and in fact, are discussed before crack
problems in the text because they are slightly easier to describe. Two-dimensional problems can
be approached by the same basic technique, and lead to a formulation of mixed boundary-value
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SELF-SIMILAR PROBLEMS IN ELASTODYNAMICS 437

problems that requires the solution of Hilbert problems, very closely related to the corresponding
static problems set out by Muskhelishvili (1953). Again, as in the static work of Willis (19714,
1972), the close relation between two- and three-dimensional problems is brought out, the
solution of both being expressible in terms of the solution of the same Hilbert problem. For
problems that are axisymmetric, the three-dimensional formulations degenerate immediately
to yield equations of Abel type. Thus, many of the static crack problems discussed by Lowengrub
& Sneddon (1970), for instance, can be generalized to self-similarly growing cracks and, in addi-
tion, many problems of a truly three-dimensional nature can be solved. The formulation thus
unifies a large part of elastostatics and elastodynamics, both two-dimensional and three-
dimensional, though the self-similar property that is assumed precludes any possible extension to
bodies of finite extent, for example, as this would introduce a characteristic length.

In the course of the work, new formulations of the traction and displacement boundary-value
problems for an anisotropic half-space are given, which are used as points of departure for solving
mixed problems. They yield immediate solutions of the unmixed problems that are more general
than any given before, but worked examples are confined, in the main, to the more difficult mixed
problems in the present work. In both the two-dimensional and three-dimensional problems, the
main singularities, or ‘arrivals’, in the stress fields are investigated. The resulting expressions are
more general than any already available, even for ‘Lamb’s problem’, and should be useful for
certain applications in seismology.

It is convenient here to introduce the notation that will be used throughout the paper. Both
matrix and tensor notations are used, as the context demands. The summation convention is
employed, with Latin suffixes taking the values 1, 2, 3 and Greck suffixes the values 1, 2 only.
Relative to a set of cartesian axes, the displacement vector has components «,(¢, x). The stress
tensor has components o;(f,x) and is related to the displacement gradients through the

generalized Hooke’s law
Oy = Cijiali, 1 (1.1)

where ; denotes 9/0x; and ¢;;y, is the usual tensor of elastic moduli, with the symmetries
Cijiar = Cjita = Crtgge (1.2)

Substitution of (1.1) into the equations of motion, without body forces, gives the self-adjoint,
totally hyperbolic system

Cojiati,iy = Pl (1.3)
where p is the density of the medium and a superposed dot denotes 9/0¢. When matrix notation is
used, u(t, x) denotes the column vector with components #,(f, x) and the equations of motion (1.3)

are written
K, V)u=0, (1.4)

where K(w, ) is a matrix with components
Ki(0,8) = cijui&i— pwdy. (1.5)

Although the work is expressed entirely in terms of the above equations of elastodynamics, the
essential properties of these equations are that they are linear, homogeneous and self-adjoint and
the approach that is developed could be applied to any other system with these properties.

28-2
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438 J. R. WILLIS

2. THE HOMOGENEOUS TRACTION BOUNDARY-VALUE PROBLEM
2.1, The three-dimensional problem

Let tractions (¢, x,) be applied, for time ¢ > 0, to the surface x3 = 0 of the half-space 3 > 0.
The traction vector 7(4, x,) is homogeneous of degree z in (¢, x,), so that

T(t,x,) =t*T(y) (¢t>0), (2.1.1)
where Y= (YY), Y1==%[t, Y2 =%/t (2.1.2)

The displacement field u(¢, x) which T'(¢, x,) generates within the half-space is clearly homo-
geneous of degree n+ 1 in (¢, x). It satisfies the differential equation

K@,V)u=0 (55> 0), (2.1.3)

and the initial and boundary conditions

u(0,x) = 4(0,x) =0 (x3 > 0), (2.1.4)
C(V)u(t,x)—>T(tx,) as x3—> O,} (2.1.5)
u(t,x) >0 as |x| o0,
where the matrix C(£) has components
Cir(8) = Cizu by (2.1.6)

The second of conditions (2.1.5) implies, of course, a restriction on 7(t, x,) as (¥% +x3) = 00; we
will, in fact, assume below that the function 7(y) defined in (2.1.1) is integrable along any line
NolYa = P-

A formal solution of the problem defined above may be obtained by taking Fourier transforms,
It will be apparent, however, that the Fourier transform so constructed is integrable over any
bounded domain and has at most polynomial behaviour at infinity. It is thus a temperate distri-
bution (Hérmander 1963) and hence its inverse «(¢,x) is an actual solution in the sense of
distributions which, moreover, is unique within the space of temperate distributions. We define
the Fourier transform i(w, §,, x3) of u(t, x) as

(0, &,y x5) = (2n)—%f0w dtffdxl dxyu(t, x) exp {i(wt+£,x,)}. (2.1.7)

It will be convenient to let w be complex but to keep &;, &, real. For fixed &,, &,, x5, equation (2.1.7)
defines (v, &,, %) as a function of w which is analytic in the upper half-plane so that the correct
inverse of (2.1.7) is

ult, %) = (27)3 f f dg, d&, f Mﬁ» dw (o, £, 1) exp{ —i(wt+E,%,)). (2.1.8)

—®

Equation (2.1.8) defines a u(¢, x) which is zero for ¢ < 0. If the existence of u(¢, x) is assumed, the
analytic property of @(w, &,, 3) follows. However, our object is to find «(, ¥) and this will be done
by constructing @(w, £,, ;) directly. The analytic property of the @(w, £,, x3) so constructed should
therefore be checked directly, as should the claim that #(w, + 0i, £,, x5) is a temperate distribu-
tion in the real variables w,, &, &,, for each fixed x,; these properties will, however, be evident
below and will not be discussed further.
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To proceed now to details, equations (2.1.3) and (2.1.7) imply that

K(w, &5, 85,105) @i(w, 8, %5) =0 (%3 > 0). (2.1.9)

The general solution of the ordinary differential equations (2.1.9) may be found by seeking
solutions of the form

@ = vexp {—ifz45}, (2.1.10)
in which the column vector v is independent of x3. The expression (2.1.10) satisfies (2.1.9) if
K(w,8)v =0, (2.1.11)

where § has components (£, &,, &5). This equation has solutions if
|K(w,&)| = 0. (2.1.12)

Equation (2.1.12) has, for each fixed (w, &, &,) six roots &, = £ (w,&,) (N = 1,2,...,6), which
may either be real or may occur in complex conjugate pairs when o, &, &, are all real. Corre-
spondingly, the general solution of (2.1.9) may be expressed as

6
4w, &,y %5) = NZ_I [adj K(w, V)] bV (w, &,) exp { — 1) x5} (2.1.13)
Ficure 1. A possible set of curves of w against &, for fixed & and &,,
obtained from equation (2.1.12).

/

- /5 i\\

&

AN

where £V denotes the vector (&, &, £) (0, £,)) and the 4% are to be determined from the boundary
conditions (2.1.5). First, to satisfy (2.1.5),, values of N for which £ (v, £,) have positive imaginary
part when o lies just above the real axis must be rejected. To decide which values of N are relevant
it is necessary to discuss briefly the Riemann surface of the algebraic function &4(w, £,) which is
defined by equation (2.1.12); the argument to follow is very closely related to one given by
Burridge (1970). The function &3(w, £,) is single-valued if w is allowed to range over the six sheets
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440 J. R WILLIS

ZN (N =1,2,...,6) of its Riemann surface, taking the values & (v, £,) on Z¥. The sheets are
connected across appropriate lines joining the branch points of the functions £} (w, £,). The most
important branch points are those on the real axis in the complex w-plane and these may be
discussed by reference to figure 1. This shows a possible set of curves, defined by equation (2.1.12),
for fixed £;, &,, when w and £, are real: that there are six real curves follows from the assumption
that equations (2.1.3) are totally hyperbolic, and they are symmetric relative to the line w = 0
because equation (2.1.12) contains only w?. Each curve has an equation of the form

w(E) = & (B+E+E)e(0), (2.1.14)
where § = (£ £ £ (B2 + 3+ £D)D (2.1.15)

is a unit vector in the direction of § and ¢({) is one of the possible speeds of plane waves propagating
in this direction.
The roots &Y (w,, &,), when they are real, are the intersections of the line

© = 0, (2.1.16)

with the curves (2.1.12) shown in figure 1. If |w,| is sufficiently large, there are six real roots
£Y¥(wy, &,). Three of these roots correspond to intersections at which dw/[0&; > 0 and three to

intersections at which dw[0&; < 0. The three of the former type will be assigned to the Riemann

surfaces 2V (N = 1, 2, 3) and the three of the latter type to 2V (N = 4, 5, 6). Branch points occur

at points of tangency of (2.1.16) with the curves (2.1.12), at which each of a certain pair of roots,

EM(w, £,) and EV(w, £,) say, will cease to be real but will become complex conjugates. A branch

line, joining 2V to Z¥ may now be introduced, by joining the point (wy, &3) to ( —w,, &5), at which

the same phenomenon will occur. Similar branch lines may be drawn between all points of
tangency for w, > 0 with the corresponding points with w, < 0. Parts of these may be redundant

at points at which two roots again become real (at maxima of the curves (2.1.12) if w, > 0), but

the construction has now defined the most important branch lines of the Riemann surface. On

the sheets 2V (N = 1,2, 3), if now w moves from right to left just above the real axis, the corre-

sponding root &Y (w, £,) is real when w is large and positive, and remains real and decreasing

with @ until a branch point is reached. Thereafter, because w passes to the right of the branch

point (which is assumed to be simple), & (w, §,) turns right and hence has positive imaginary part.

It therefore has positive imaginary part in the whole of the upper half of 2V since otherwise it

would have zero imaginary part at some point and this can only occur when w is real. Similarly,

the branches £ (N = 4, 5, 6) have negative imaginary part in the whole of the upper half of
ZN (N = 4,5,6). Branch points could also occur off the real w-axis, but these could only link

XM to XN, where M and N both lie either in the range (1, 2, 3) or (4, 5, 6).

It is now clear that only the values N = 4, 5, 6 can be admitted in the sum (2.1.13) if condition
(2.1.5),4 is to hold. It may be noted in passing that equation (2.1.8) now represents (¢, %) as a
superposition of plane waves which, when &Y is real, have 3-components of group velocity which
are positive, so that energy is propagated away from the surface (Lighthill 1960). The condition
(2.1.5); now implies that '

%4 C(EY) adj K(w, £¥) 6¥(0,£,) = iT(0, ), (2.1.17)
N=

where T(0,&,) = (2n)% [: dtf dxy dx, T(8, %,) exp {i(wt+£,x,)} (2.1.18)
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is the Fourier transform of T(¢, x,). Equation (2.1.17) can be satisfied by taking

MN(w,§,) = i[ME}:4C(§M) adj K(o, gM)]_l T(0,&,), (2.1.19)
independently of N. Hence,
(0,60 %) = (20 3 exp{~i/x) BY(0,£,) T(0, ), (2.1.20)
where BN(w,£,) = (2m)~%iadj K(o, £V) [ §4C(§M) adj K (v, gM)] —1. (2.1.21)
M=

Before proceeding with the inversion of (2.1.20), we remark that, since 77(¢, x,) is homogeneous
of degree n, T(w, £,) is homogeneous of degree — (n+3) in (o, £,) and, further, is analytic in the
upper half of the complex w-plane for each real &,. Also, from (2.1.21), BN(w, £,) may be recog-
nized as a homogeneous function of degree —1 in (o, £,), since & (v, £,) is homogeneous of
degree 1. In view of these properties, it will prove more convenient to calculate first 9"+ u(z, x),
whose Fourier transform is (2.1.20) multiplied by (—iw)*+% Thus, we have

A+ (1, x) = (—i)nt2 z f f 46 a6 7 dwam BV (0, £,) T(0,£,) exp{—i(wt+EV.5)}

v —o+40i
(2.1.22)
which may be evaluated, in the sense of distributions, as

o HDu(t, x) = (—1i)nt Z lim f f d¢, dg, f o dw w2 BN¥(w, £,) T(w, £,)
o001

N=4¢—>0
x exp{—i(wt+&N.x—ie|f|)}, (2.1.23)

where |&] = (£3+£3)%. The integrals in (2.1.23) may now be simplified by a method which has
previously been used in a less general context by Eason (1966); we set

Ne = gu/|€|, Q= w/|g|> (2.1.24)

and transform to polar coordinates in (£, £,)-space. The homogeneous properties of the functions
BY and T then reduce the resulting integrals to the form

6 o0 -0
Ay, x) = (—i)n+2 Y lim ds f aeomeByQ,,) T(2,7,)
Inl=1 — o0 +01

N=4¢—0

xf:d|§| exp{—i|E| (Qt+EN(Q,7) . x—ie)}

or, upon integrating with respect to |£],

. 6 01 Qni2BN(Q, p.) (_Q )
or Dy (t, x) = — (—1)» 3] lim dsf de z 2. (2.1.25
Fullx) = - (=0 2 =1 J—os0i QL+, 5,+ & (L, 7) %y 1€ ( )
The integral with respect to £ may now be calculated by closing the contour in the upper half
of the complex Q-plane and employing Cauchy’s theorem. The functions B¥(2,,) and T(2,7,)
are analytic in the upper half of the complex 2-plane and the only contributions to the integral
come from the zeros of the functions

PV(Q) = Qb+, x,+EY (2, 7) 23— i€, (2.1.26)

if there are any such zeros in the upper half-plane. If ¢ < 0 there are none, since the imaginary
part of £5 (2, 7) is negative in the upper half-plane. Therefore, there is a £y > 0 such that ¢¥(2)
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has no zero in the upper half-plane for ¢ < fy. The value of £y may be estimated as follows. Let

0N satisfy the equation
QN+ 77,2, + £ (QN, ) 25 = 0. (2.1.27)

Then, since ¢ is arbitrarily small, the root £2 of (2.1.26) is given asymptotically as
Q= 0QNtel,,
where 2, satisfies the equation 2, (¢ + &Y, (2N, 7) x3) = 1. (2.1.28)

If 2V lies in the upper half-plane, then so does 2 since € is small. For small ¢, however, equation
(2.1.27) has a real root and then @ lies in the upper half-plane only if

t+ £ (2N, ) %5 > 0. (2.1.29)

For any particular medium, this inequality could be studied directly. However, in the general
case, when x; = 0, ¢¥(2) = 0 when 2 = (—19,x,+1€)/[t, which lies in the upper half-plane for
all £ > 0 and is singular as ¢ 0. It can now be shown that there is always a transition when
| 2] = oco. If 2V is real and |2V] is large, then

EY(QN, ) ~ —25/c(0,0,1)
and g:]iYQ(QN> 77) ~ = 1/6(0’ O> 1)?

where ¢(0, 0, 1) is one of the speeds with which plane waves may propagate in the 3-direction.
The inequality (2.1.29) now holds for ¢ > ¢y, where

ty = %/¢(0, 0, 1). (2.1.30)

That this ¢y is the smallest value of ¢ for which ¢¥(£) has a root in the upper half-plane now
follows by continuity with respect to the variable xs.
Having established the value of ¢y, application of Cauchy’s theorem to (2.1.25) yields, letting

e—>0,
6
a(tn+2)u(t, x) — zn(_i)’n+2 5 § ds (QN)n+2
N=4J Inl=1

BN(QY, ,) T(QN,7,)
1+ EY o (2N, ) %,
in which 2V satisfies both (2.1.27) and (2.1.29) for ¢ > ¢y. Equation (2.1.31) is our basic result,
from which u(¢,x) may be obtained by integration. In preparation for displaying the close

structural relationship between the present solution and its two-dimensional counterpart, which
will be discussed in § 2.3, we now represent 7(w,£,) as a Cauchy integral as follows. We have

H(t—ty), (2.1.31)

T(w,£) = (2m)-} f ® dtexp fiwf} f f d, dayexp i, .} T(, %),
0
which may be reduced by transforming to the variables

) , Yo = Xoft
and using (2.1.1) to give

T(w,6) = @) [T [[andn T epfto+er)). @152)

Integration with respect to ¢ (for Im (») > 0) now yields

T(0,£,) = (2r)~F (—i)n+1 a0 f dys dys - I(gy)y ,
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which may be reduced finally by integrating along the line

gaya = P
to give T(w,£,) = (2r)—% (—i)n+1 30+ f T(p w+[2 d (2.1.33)
where 7(1,£) = [[dndys T(9) (p -0 (2.1.34)

is the Radon transform of 7(y). Some important properties of the Radon transform have been
obtained by Ludwig (1966), by exploiting its close relationship to the Fourier transform; those
relevant to the present work are summarized in the appendix.

By substituting (2.1.33) into (2.1.31), we now obtain

& ( > 170&) (n+2) ( S; 3 ‘5)
n+2) % ON\n+2 1.
ortDu(t, x) = — (2n) §=}4 17’Izlds( ) T+ EN(ON, ) 7 H(t—ty), (2.1.35)
where Fotd(z,9) = a(zn+2)f ( !’ %z (2.1.36)

It can be proved that the representation (2.1.35) defines a real function 3" *® u(¢, x) by replacing
7 by —1. It is evident that, if £&Y(w, %) (N = 4, 5, 6) is a root of the equation

|K(, 7., €5)| = 0,
then —£Y(w,7) is a root of |K(=®, —74,85)| =0,

where the superposed bar denotes the complex conjugate. Therefore, if £ is complex,

EU(—w, —7) = —EV(w,7) for some M not necessarily equal to N but still in the range (4, 5, 6).

Analytic continuation now shows that this result remains true when &% is real. Hence, by taking
minus the complex conjugate of (2.1.27), it is obtained that

_gﬁt__,'?ax“_l_géu(_:g_N’ ""7)x3=
so that QM(—p) = —QN(y) and EF(QM(—y), —n) = —EY(QN(p), 7).

That the right side of (2.1.35) is its own complex conjugate now follows upon use of the even
property (A 2) of the Radon transform.

The n+ 2 integrations with respect to ¢ which are required to produce (¢, ¥) cannot be per-
formed explicitly but it is possible to find a simple expression for d{*+Vu(¢, x). This is done by
introducing inside the contour integral the variable 2V in place of ¢. By differentiating equation
(2.1.27), it is obtained that

dey d¢
QN t+ & (2N, 1) %,
Therefore,
6 ¥y, x,7)
oDyt x) = —(2m)E Y « dsf dQ O HBN(Q, ) F2(—Q 9), (2.1.87)
N=4J Inl=1 2 (G,

which may be simplified a little further by remembering that |2N(zy, x, )| is infinite. The integral
with respect to 2 is thus evaluated along the path defined by equation (2.1.27), which begins
at Q¥(t,x,7) and ends at infinity, and always lies in the upper half-plane. By virtue of the fact
that the integrand is analytic in the upper half-plane and is 0(1/£2) as || — oo, the integral can
in fact be evaluated along any path from Q¥(, x, 9) to infinity which lies in the upper half-plane.

29 Vol. 274. A.
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444 J. R. WILLIS

2.2. The arrivals for the three-dimensional problem

The singularities, or arrivals, of the field «(¢, x) are of particular interest; they arise physically
from the arrivals of disturbances travelling at one of the possible wave speeds. A complete
analysis of all possibilities would be very laborious and attention will be restricted below only to
the simplest cases. In particular, the loading 77(t, x,) will be assumed to be zero outside a surface
S(¢) which expands uniformly from the origin for ¢ > 0. Further, the velocity of each point of the
boundary 95(¢) of S(¢) will be assumed to be smaller than any of the possible speeds with which
plane waves (including the Rayleigh wave) may propagate in the direction normal to 05(¢). Such
surfaces S(¢) will be termed ‘subsonic’; they will feature prominently in later sections of this work.

For subsonicloading, as defined above, itis clear physically that body-wave arrivals will appear
at the point #, at the times at which plane waves passing through the origin at time ¢ = 0 would
first meet x. These times are related in a simple way to the geometry of the ‘slowness surfaces’ of
the waves (Hearmon 1961) and the derivation to follow is designed to highlight this feature. It is
convenient to start from the representation (2.1.25). It is easy to verify, by the use of an argument
like the one employed at the end of the preceding section, that the integral over the negative half
of the cylinder || = 1, —00 < £ < o is the complex conjugate of that over the positive half,
so that (2.1.25) can be rewritten as

5 w001 nt+2 BN
where the symbol Re denotes the real part of’. The range of integration with respect to {2 may
now be split into two parts: that for which £ (2, ) is real (2 > 2,(#), say) and that for which
it is complex (2 < £2,(7)). Singularities of the integrand will occur in the former range, if the
real part of the denominator changes sign, and these can lead to ‘arrivals’. To demonstrate this,
the integral I over that part of the cylinder for which 2 > ©, (%) is first transformed by replacing
the variable 2 by the variable &Y (2, 7) to give

(2.2.2)

?

L ° LW 0w\ 0"2BN(w,1,) T(w,7,)
I(t, x) = lim o1 d&'f_w dga aga (77, §3) ( 653) WE+ Ny Xy + gaxs —1€

e—0

where w = (7, §;) is one of the curves shown in figure 1, with @ > 0. The integral / may now be
transformed by projection onto the slowness surface S which is defined by the equation

w(§) = 1. (2.2.8)
Since the integrand is homogeneous of degree — 3, this gives
dS ow dw\ BN(1,£,) T(1,£)
ol 2.2.
It %) = 161_1)13 S|Vw|6§3H( 053) t+§.x—1e (2.2.4)
A discontinuity in I(¢, x) occurs at the time ¢ = ¢, for which the plane
t+£.x=0 (2.2.5)

becomes tangent to the slowness surface S. To investigate this, it suffices to consider the integral
over any small neighbourhood A47(£°) of the point of tangency £° Then, since only the term
(¢4 &. x —i€)~Lvaries rapidly in 4" (£°), the other terms in the integrand may be replaced by their
values at £° and we may consider

N a“’H( aw)BN(I £9) T(1, £) lim ds (2.2.6)

|V |a§3 ag3 e—>0 ,/V(§0)t+g x—le
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The behaviour of the integral in (2.2.6) depends upon the geometry of the slowness surface near
the point £°. Attention will be restricted here to the simplest (and most common) possibility, that
the Gaussian curvature of S is finite and non-zero at £°. In this case, taking normal coordinates
p, g with origin at £°, the surface S is represented approximately in .#7(£°) by the equation

(E—£%.x = La|x|p2+1b|x| % | v (2.2.7)
where a and b are the principal curvatures at £°. Three cases may now be distinguished, ¢ > 0 and
b>0,a<0andb < 0, and ab < 0; these are discussed below.

(i) a>0,b>0.
In terms of the variables p, ¢, the integral

. ds
J=1 PR A 2.2.8
el—rg sreyt+§&.x—ie ( )
takes the form
dpdq
.— lel—r-}‘(;ff‘gdlxlpz-l-1b|xlq2+t_to_i6 (2.2.9)
or, upon setting
by = (delx))}p, 0= (B0]xD)Eg, (2.2.10)
-———-——-2 3 dpld‘h )
= —. 2.2.11
d (ab)*lxl?fg ﬂpi+q%+t—to—m ( )

Clearly the discontinuity in J as ¢ varies will be independent of the shape of A7(£°), and it is
convenient now to choose A4"(£°) so that

pitqi <o ' (2.2.12)
The integral in (2.2.11) may now be evaluated by transforming to polar coordinates in the

(b1, 71) plane; this gives :
4 . [° rdr
J = hmf

" (ab)|x]| o0 o P2 E—ty—1€’
27 0%+t —t,—ie
= _— . 2.2.13
or T = @i i ( T ) (2.2.13)

It now follows immediately from (2.2. 13) that, when ¢— ¢, is small,

J~ {In |t —t)| —inH(t,—1)}. (2.2.14)

@ %l x|
Thus, from (2.2.1), (2.2.6) and (2.2.14),

—4r 1 Ow w
n+2) N—————‘— L.
ot Du(t, x) (ab) ¥ [x] [Vo| 3, ( aés)

xRe{BN(1,£) T(1,8) (i)t (In|t—t)| —inH(t,— 1))} as t—t,—~>0. (2.2.15)

(ii) @< 0,6 < 0.
This case may be dealt with similarly, by defining this time

b= (“‘%alxlﬁp’ = (—%—blxl)%q. (2.2.16)
Equation (2.2.11) is then replaced by
- =2 y dp,dg,
7= [ (2.2.17)

29-2
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446 J. R. WILLIS

in which (ab)# is taken positive. Similar manipulations now show that

27 .
S~ it Wl — ol +inH(E= )}, (2.2.18)
so that

47 1 Ow 0w
(n-+1) NI T A T RE.
o Pu(t, x) (ab)¥ x| [Vo] 6§3H( 653)

x Re{BN(1,£9) T(1,£) (—i)»* (In |t —to| +inH(t—1,))} as ¢—1,—0. (2.2.19)
(iii) ab < 0.
It is clear by symmetry that the same result will be obtained if either ¢ < 0 or 4 < 0; for the
calculation below, we take ¢ > 0 and & < 0. Upon setting

b= (3a|x)ip+ (—3b|x)2g, 1= (Jalx[)ip—(—1b]x])2g, (2.2.20)
the integral J defined by (2.2.9) becomes
1. dp, dg
= | £ R 2.2.21
d :gblflxlelfolff[h%"'t_to_le ( )
It is convenient now to let A" (£°) be the square
1] <6, |gu| <9 (2.2.22)
and also to calculate first
1 : dp, dgy
= - — 2.2.2
% |abl%[xlzl—r>{)lff(ﬁl‘h+t"to‘le)z ( )
Performing the integrations now gives
_ 2 . 1 —0%4+t—1,—i€
O = =TTy {t——to-—ieln( Fri—i -1 )}
Hen oS 2E 1 t—ty—>0 2.2.24
ence, s (B[] =1, — i as t—1fy—> (2.2.24)
and J ~ T&%ﬂ (In |t —ty| —inH{ty— ). (2.2.25)
Thus,
—47 1 v Ow
APy (4 x) ~ o (__)
N T

x Re {BN(1,£) T(1,£) (—i)"*2 (In|t—t| —inH(ty— 1))} as t—f,—>0. (2.2.26)

For the subsonic loading which is being considered, a Rayleigh wave arrival will appear at
points x on the surface x3 = 0 of the half-space, so long as a Rayleigh wave exists. A discussion of
the existence of Rayleigh waves has recently been given by Burridge (1970, 1971) and attention
will be confined here to finding the Rayleigh wave arrival when it exists. It is convenient now to
employ the representation (2.1.31), with x; = 0. The arrival is associated with poles on the real
axis of the function

6
B(o,n) = 3 BY(w,7.). (2.2.27)

Equation (2.1.21) shows that these will arise from zeros of the function |¢(w,#)|, where the
matrix ¥ (w, ) is defined as

V(1) = 3 CE(0,7)) adi K(o, €40, 7). (2.2.25)
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It was shown by Burridge (1970, 1971) that |(w,7)| may be zero for some real v = 2°() with
|20 < ¢(9y,75,0) for all wave speeds ¢. By letting #;—>0 in (2.1.31) and using the definition
(2.1.21) of BY, it is obtained that

(204 (i) 8

n+2 443 ad_] lﬁ(.Q 17) ~
t NZ=45£,,,|=1d’9 +2adj K(Q,E¥(2,1)) —a—1- Tl T(Q,7,), (2.2.29)

when x5 = 0, where Q= —nq,x,[t+0i. (2.2.30)

ARt x) =

Again, by the argument employed at the end of § 2.1, the right side of (2.2.29) can be replaced
by twice the real part of the same expression integrated over any half of the circle |9| = 1, say
the half for which #,x, < 0. The integral in (2.2.29) is singular when —7,x,/t = 2°(%). The
effect of this singularity may be investigated by projecting the integral over the semicircle
In| =1, 9,%, < 0 onto the corresponding part C_ of the ‘Rayleigh slowness curve’ C, which is
defined by the equation ) = 1, (2.2.31)

where ¢ is the vector (;, §,). This gives, upon taking into account the homogeneity of the
integrand,

et ) = LR (it 3 [ ot adi ke, v(0,0) FEEE) e, 0),
) (2.2.32)
in which = —{,x,[t+ 0L (2.2.33)

The Rayleigh wave arrival occurs at the time ¢ = ¢, when |(8, )| first becomes zero, that is,
when the line 8%, =0 (2.2.34)
becomes tangent to C. To investigate the arrival, it suffices to study the behaviour of the integral

K ds adj P(2,0)
iy W@V KB ER0) T T

for small (¢ —¢,), where A4 (£°) is a small arc of C_ containing the point of tangency £° On this arc,
the equation of C_ may be approximated by

T(9,0), (2.2.35)

(82— o) %0 = dalx| s, (2.2.36)
where ¢ is the curvature of C at the point £° so long as a 0. Also
Q0| ~ (= Euyft+0i—1) 0, (1, 8], (2.2.37)

since |Y(1,£%)| = 0 on C, and the remaining terms in the integrand may be replaced by their
values at (1,¢°) since they are continuous. The problem thus reduces to the evaluation of the
integral ds

I =ft0—t+0i+%a|x|s2’

in which the denominator of the integrand is the asymptotic form of ¢|y(2, {)| for & close to &°
and ¢ close to ¢,. The integral J; is readily evaluated, to show that, as ¢ —£,— 0,

(2.2.38)

2 \3 T .
Iy~ (—alxl) = i a> 0 (2.2.39)
3
and Jy~ .-(_az|x|) (t_t:_ o i a<o. (2.2.40)
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Hence, correspondingly, if a > 0,

(_l)n+1 (_}‘ . N 0
Vo (20) [0, [¥ (1 go)IN adj K(1,£7(1,89)

« adj (1, £%) T(1, &) (to—t+0i)~lf}, (2.2.41)

D u(t, x) ~ (malx]) Re{

while ifa < 0,

i)n;l

o2t 3) ~ — (s ol ) Re oz o T 2, 2 K £Y(1, )

x adj (1, &) T(1, £9) (l—to—Oi)—*l}. (2.2.42)

2.3. The two-dimensional problem

Consider now the particular casc of (2.1.1) in which the traction vector 77(¢, x,) is constant

along each linc
VyXo = Pt (2.3.1)

where v = (v, v,) 1s a constant vector in the (x,, x,) plane. Thus,
T(t,x,) = T(p) (L >0). (2..2)

Correspondingly, (¢, x) depends only upon (¢, pt, x;) and is homogencous of degree 7 + 1 in these
variables. The method of § 2.1 could be applied from first principles to find u(¢, x) but, since the
formulae of § 2.1 are already available, an alternative procedure is to start from cquation (2.1.31).
It is necessary only to find the form that the Fourier transform 7'(£2,7,) takes for the loading
(2.3.2); we have

T(92,1,) = (2n)—§f0wl"dtf dx, dx, T(p) exp {i(£2¢t + 9,x,)} (2.3.3)

or, upon introducing the coordinate ¢ as the projection of x/¢ onto a unit vector A in the (x;, x,)
plane which is perpendicular to v,

TQ,,) = (2m) f ® e f [dpdgT(p) cxp (@ +mavep+m0a)).  (23.4)
0 v

The integration with respect to ¢ may be performed to yicld a factor 2nt-10(A,7,), after which
integration with respect to £ gives

72,7 = (=i @m0 (800 [LEE a0 [YZH), (a9
where ( aﬂa) = ( )H<Va77a)> }
Z(Aa”a) ( aﬂa) H( - Vaﬁa) .

The presence of the delta functions in (2.3.5) immediatcly reduces the integral around the
contour || = 1, when (2.3.5) is substituted into (2.1.31). There are contributions only {rom the
points 9 = v and 5 = — v which, furthermore, can be shown to be complex conjugates, by the
reasoning following cquation (2.1.36). Therefore,

(2.3.6)

. S ((QV)nRBN(ON, dpT o
toute ) = 22 H(- 1) £ Re( o [T o), 23
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where now 2V = Q¥ (). Equation (2.3.7) can be expressed in a form similar to equation (2.1.35)
by defining
1 dp T(p)
(n+1) = —_ont1) | 27 A
G (z, ) 2niaz =z (2.3.8)
Substitution of this expression into (2.3.7) gives

QN)ns2 BN(QV, v,
t+ &5 (2N, v) x5
where the symbol Im denotes ‘the imaginary part of”.

Equation (2.3.9), like (2.1.35), can be integrated once with respect to time by transforming
the variable of integration to 2V; this yields

(e ) = 2(2)+ 3 Tm! Goin(— 0N ) Hlt—t), (239
N=4

6 ©
ot 8) = 2(2m) Y, Im{ f 4eemBN(@,v,) G-, V)}H(t—tN). (2.3.10)
QN x,v)

N=4

2.4. The arrivals for the two-dimensional problem
The singularities in the field 0**®u(¢, x) represented by (2.3.9) are easier to find than their
three-dimensional counterparts, since they will arise just from the singularities of the algebraic
functions BN(QN, x,) /(¢ + &Y o(2N, v) x,), at least if the loading T(¢, x,) is subsonic in the sense
that 7'(t, x,) = 01if |v,x,| > Vt, for some V smaller than all of the speeds of plane waves propa-
gating in the direction of v; this will be assumed in what follows.
First, the body-wave arrivals are produced by the zeros of the functions

XN(tx,v) = E+ o2V, v) xy. (2.4.1)

The time ¢ = ¢, at which ¥V (¢, x, v) is zero is closely related to the geometry of the intersection of
the slowness surface (2.2.3) with the plane containing both v and the x;-axis, since 2V in (2.4.1)
satisfies the equation

QN+ v, 5, +EY (2N, v) x5 = 0, (2.4.2)

while the definition of &) implies that

|K(Q, v, £)] = 0. (2.4.3)
Thus, upon defining s=1/ON, & =&y, (2.4.4)
it follows from (2.4.2) and (2.4.3) that

bt sV, +E3x5 =0 (2.4.5)
and (v, &,) =1, (2.4.6)

where ©(§) = 1 defines one sheet of the slowness surface (2.4.3). Equations (2.4.5) and (2.4.6)
have a pair of solutions (s, §;) which coalesce at the time ¢ = ¢, at which the curve (2.4.6) is
tangent to the line (2.4.5) in the (s, ;) plane. That y¥(¢,x,v) = 0 when ¢ = ¢, follows since the
vanishing of ¥V is just the condition that equation (2.4.2) should have a double root, 2V = °,
say. This can be verified explicitly by noting that equation (2.4.6) implies

gs = gév(ls sVa)) (2‘4’7>

which is tangent to (2.4.5) when
VoXy+EN x5 = 0. (2.4.8)
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But £Y is homogeneous of degree 1 in (£2,5) and so

SESS(1, 5v,) + 88/ o(1, 5v5) + & (1, 5v,). (2.4.9)
Therefore, (2.4.8) is equivalent to
Vo, +EN (1, 50,) x5 — EY (1, 5,) x5 = 0. (2.4.10)

Since equation (2.4.5) is satisfied with this value of s when ¢ = £, and £}, is homogeneous of
degree zero, equation (2.4.10) states that
XN(tO’ Xy V) = 0.

The asymptotic form of y¥(¢,x,v) for ¢ close to  may now be found by a straightforward
perturbation expansion. A similar exercise has recently been performed by Payton (1972), who
investigated in great detail the arrivals produced by a line source in an infinite isotropic medium
which had been uniformly prestrained. Here, as in § 2.2, attention will be restricted to the most

common case in which the curvature of (2.4.6) is finite and non-zero at the point of tangency
(s°, £3) with (2.4.5). Let 2V = Q0 when ¢ = ¢,. Then, for ¢ close to ),
XNt x,v) ~ E—by+ (2N —0Q0) £V (2%, V) xs. (2.4.11)
But by expanding (2.4.2),
(2N — Q0) )+ Q20(t — ty) + (2N —Q0) £N (2 v) x5 + (2N — Q)2 EN (2%, v) x5 ~ 0, (2.4.12)
200(t,—1) \¥
so that (N —Q0) ~ (m—%—,j)—);c—;) ,

since ¥¥(4y, %,v) = 0. The branch of the square root in (2.4.13) is chosen so that 2V — Q0 has
non-negative imaginary part. Hence
XN (2, v) ~ {2208 0o (Q0, V) gt~ )} (£log > 0),}
~ — {2008 0o (0, V) 23ty — )} (£l e < 0).
The term &Y ,,(2° v) can, of course, be related to the curvature of (2.4.6) at (s° £3); a more
compact expression is obtained, however, by noting that

Qogg”w(go, V) = g:ls\,]mz(la SOV); (2.4.15)

(2.4.13)

(2.4.14)

since this function is homogeneous of degree zero. Hence, for ¢ close to Z,
oD u(t, x) ~ 2(2m)~% Im {(20)»+2 BN(Q9, v,) GWHD( — 0O, v)
x [28 ao(1, 5%) 25 (g — 1) ] H} sgn [£]0a(1, s%)],  (2.4.16)
where A 00 = 1[50 (2.4.17)

and the curve (2.4.6) touches the line (2.4.5) at (s°, £§(1, s%)) when ¢ = ¢,.
There is a Rayleigh arrival on the surface x; = 0 if the function B(£, v,) which is defined by
equation (2.2.27) has a pole on the real axis. As discussed in §2.2, B(£2,v,) has a pole at

02 = Q%) if |9(820,v)| = 0, (2.14.18)

where (o, 1) is defined by equation (2.2.28); Q°(v) if it exists, is the speed with which a Rayleigh
wave will travel in the direction of v. Then, if £ is defined by

ty = |Vaa| ]2, (2.4.19)
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it follows that (= v, [t+ 01, v)| ~ (2004, — &) + 01) 8, |1 (R0, v) |, (2.4.20)
when ¢ is close to ¢, if v, x, < 0. Hence,

6
oDy (s, x) ~ —2(2m)~t Re{ (29712 3, adj K(2°,EN(Q2%v)) adjy (20, v)
N=4

G(n+1) ( — Qo’ V)
" [20(2,—8) + 01] O, | (220, v) I} (2.4.21)

If v,x, > 0, the corresponding result is (2.4.21) with ¢ and ¢, interchanged.

2.5. Lamb’s problem

Lamb’s problem in three dimensions is to find the displacements generated by a point impulse
applied at the origin at time ¢ = 0. Thus

T(t,x,) = Ty8(t) 8(x) d(), (2.5.1)

where T; is a constant vector. The displacement u(Z, x) which is produced by (2.5.1) is most
conveniently expressed in the form

u(t,x) = U(t, x) Ty, (2.5.2)
where the matrix U(t, x) satisfies the differential equation (2.1.8), the initial conditions (2.1.4)
and the boundary conditions (2.1.5) but with T(¢, x,) replaced by I8(¢) 6(x,) 6(x,), I being the
identity. The problem does not fit immediately into the scheme of § 2.1 since it was implicitly
assumed there that n > — 2. However, Duhamel’s principle ensures that

U(t, x) = 0, U(t, x), (2.5.8)
where the matrix U, (¢, x) satisfies (2.1.5) with 7(¢, x,) replaced by IH(t) §(x,) (x,). The matrix
U, (t, x) can be found immediately from equation (2.1.31), with n = —2 and

7@, .) = (2m) 1| e[ [ sy oxp (247,20} 8(02) ), (2.5.4)
0
that is, T(Q,n,) = (2n)E1i/0. (2.5.5)
U BN(QN, ) H(t—ty)
H Ult,x) = (2r)-}id e AL 2.5.6
ence (62) = Cry 0 2y a b DT 87 o2, 7)) (2:5:)

Equation (2.5.6) is easily shown to be equivalent to the result of Burridge (1971), which was
expressed in terms of a ‘slowness’ variable s = 1/2V and was obtained by an application of
Cagniard’s technique.

The ‘arrivals’ associated with (2.5.6) were not discussed by Burridge. They are obtainable
directly from the results of § 2.2. For example, if ¢ > 0 and 4 > 0 in the notation of § 2.2, the
body-wave arrival is given as

2(2m)~F 1w 3w BN(1, £)
U6 ~ G atee. (=) el e (200

as t—ty— 0.The other cases, ¢ < 0 and b < 0, and ab < 0, could be given similarly. The Rayleigh
arrival can likewise be obtained, from (2.2.41) if @ > 0 or from (2.2.42) if a < 0. If @ > 0, for

example,
(2 \bp (8 adiK(LEY(LEY) adi (1,80)
vl x) 8n2(a|xl) Re{Nzﬁ V() [ 6,19 (, &0y o1+ 00 %} (2.5.8)

as t—it,—>0, for 2; = 0.

30 Vol. 274. A.
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The two-dimensional form of Lamb’s problem is to find u(Z, x) for the loading
T(t,,) = Ty (2) 8(r,x.), (2.5.9)

where v is a unit vector in the (x4, ¥,) plane. Again, u(¢, x) has the form (2.5.2), where now U(?, x)
satisfies (2.1.8) and (2.1.4), and (2.1.5) with T(¢, x,) = 16(t) 8(v,*,). Thisloading is homogeneous
of degree — 2 but the result (2.3.9) is not directly applicable because it is strictly valid only for
n > — 1. However, U(¢,x) is given by (2.1.31) with n = — 2 and

T(Q,1,) = (27)8(A,1.), (2.5.10)
where A is a unit vector in the (¥, x,) plane which is perpendicular to v. As in the derivation of
(2.8.9), the contributions to the integral (2.1.31) from 9 = v and = —v are complex conjugates,
and so

_ 6 BN( QN )

which again agrees with Burridge (1971).

It may be noted that equation (2.5.11) has the form (2.3.9) with n = —2, if G®+D(—QN, )
is replaced by —i. The ‘arrivals’ of the field (2.5.11) are therefore obtainable directly from
the results of § 2.4, if this replacement is made. For the body-wave arrivals, from (2.4.16),

U(t %) ~ —2(2m)~ Re {BV(20, 1,) [28)aa(1, ) y(ty— 1)]1H) sgn [ ga(L, s%)],  (2.5.12)

as ¢ —ty— 0, while for the Rayleigh arrival, if v, x, < 0,

S, adj K(Q° EV(Q°, v)) adj '/’(9"" V)}, (2.5.13)

Ullyx) ~ =2(2m) Im{N§4 [ty — 1) + 01] 0 [ (20, v)
as t—t,— 0, for x5 = 0, from (2.4.21). If v, x, > 0, the Rayleigh arrival is given by (2.5.13) with
t and ¢, interchanged.

2.6. Isotropic half-space

The results of the preceding sections will be specialized for an isotropic half-space both for
detailed illustration and for later use. If the half-space has Lamé moduli A, x, the matrix K(w, £)

has components
Ki(0,8) = (u&;€;— po?) 8.+ (A+p) €€, (2.6.1)

and a simple calculation shows that equation (2.1.12) has roots

g5 = + (w2 —|£])}  (once), } (2.6.2)

= £ (B = | (twice),
where « and g, the speeds of dilatational and shear waves, are given as

o = (A+2p)p, B*=plp (2.6.3)
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and, as previously, |£|2 = £} + £3. In view of the degeneracy of the matrix K (o, £), the reasoning
of § 2.1 needs slight modification. First, it may be noted that K(w, §) has eigenvectors

& £ 6] -
Ut = lﬁz » U = |6ELNE, U= & |, (2.6.4)
e - 18 0

the former pair corresponding to the eigenvalues £5* and the latter two pairs to the double eigen-
values £F7. In terms of these, the general solution of equation (2.1.9) which is bounded as x3->c0
with Im (w) > 01is

A(w, &y, &g, %5) = U—2b®exp{ —ib5 *xg} + (Ur P05 + Uy # bh) exp { — 157/ x,}, (2.6.5)

where 4%, b4 and b4 are functions of (w, &, &,), if the radicals in (2.6.2) are defined by cutting the
complex w-plane between +a|&| or +f|£| and the branches are chosen so that Im (&%),
Im (£5%) < 0 when Im (0) > 0. Equations (2.1.17) are now replaced by

safseie) Glowg) -afoed [

zigy (%~ 1gls) B (ze-5) (G ~1ee)" | [ot] = Tt (209

i(lee-%) a0 ||
which may be solved to give
o] 2,16l (- 1e)" 2galel (G-16e)' (2ler-2) 1o
iu€] D(w, |£]) E,D( ,l€| ____ﬁL_ . e
E e (G-te) el (G )
where Do, el = 41¢l* (% 162)” (- 1e) + (26— (2:6.8)

The equation D(w, |£]) = 0is the secular equation for Rayleigh waves, yielding values of (v, |£])
for which a combination of plane waves of the type (2.6.5) can be found which leaves the boundary
xg = 0 of the half-space free of traction. @(w, £, £,, #3) is now obtained by substituting (2.6.7)
into (2.6.5). For conciseness of expression below, note that this is expressible as

ﬂ(w: gla €2) x3) = (271)% U(w: gla gz: x3) T(w: ga): (2'6~9)

where U(w, £, £,, #5) is the Fourier transform of the solution U(f, x) of Lamb’s problem, which
was discussed in §2.5. A complete expression for U(w, £, £, %,) will not be given but, for
illustration,
22
U w,g,g,x = (w/a‘ lgl
33( 1 52 3) (2 )21/,&D<(0 Igl

[(2|§|2~——)exp{ ( :—-|§|2)%x3}—-2|§|2exp{i(l(;—:—|§|2)éx3}] (2.6.10)

30-2
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and the (33) component of equation (2.5.6) reduces to

2 2
(-1 -7) (%)
dsIm

Us(t, =~——af§
53(6 %) prid 2.D(@ 1)[ (32_1)%_!2“%]

a2
@) (F ()

2.6.11)

; Q% \b Qux](’ (

PPN A A 7

where Qut 412, — (25 — l)fx*”’ = 0’} (2.6.12)
Qpt 45— (32— 1) x5 = 0.

The value of the transform U (w, &4, &9, %3) when x; = 0 will be of interest in later sections. In the
general case, it is equal to the function B(w, §,) defined by equation (2.2.27) and this notation
will be preserved here. Thus, '
i . btens,  —cepmy  —idp
B(O), ga) = U(w> gb gz’ 0) = m — N1 b+ C?]%, _id772 > (2°6°13>
idyy, idy,, e

-3 2 2
where (2m) 2 @ (Q 1)%,

R CRV VA

1;1%?2) 0 [i: (!/i: )%—D(Q, 1) (%2_ 1‘)"%]’
- e - (G- (5

(21:)‘% 02 /02 3
~aniopla )

(2.6.14)

and 2, 5 are defined by equation (2.1.24). It may be noted that, when Q is real and |2| < f, the
matrix B(w, §,) is hermitian and that, as 20 (or, equivalently, p—0so that e, f—>0), B(w, §,)
is proportional to the transform of the corresponding static Green function (see, for example,
Willis 19714).

To discuss the body-wave arrivals in an isotropic half-space, we note that

w() = a(E+E+E)T or AE+EHE),

|[Vo| = a or p,
1 x 1 x
0= = or —-—,
S AT
and a=b=a or f.

Therefore, equation (2.2.15) is the relevant one or, correspondingly for U(t, x), equation (2.5.7).
For Ug(t, x) the latter gives

Usg(t, %) ~ —— —’53—[2("%”2) /),2} —|x[) /D( (xﬁl;f))’ (2.6.15)

2mpe |x| |%|2] a?|x|?
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SELF-SIMILAR PROBLEMS IN ELASTODYNAMICS 455
as t—> || /e, where
(x%+x§)%)_4(x§+x§)x3(l x§+xg)% (843D ) .
D(la alx' - a3lx|3 ﬁ2_a2|x|2 +< azlxl2 (26.16)
e e O N O )
and Us(t, %) ~ Y e Im 2 B (ft—|x| —0i)~ D( (2.6.17)
as t— |¥|/B, where
(x%+x%)) 4(x2+x2)( x2+x2) 1(2(53+x3) )2
D(l’ Blx| - x> \a® p2]x|2 ﬂ4 lxlz -1). (2.6.18)

These expressions agree with those given by White (1965), which were obtained by an ingenious
use of the Green reciprocal theorem. Equation (2.6.17) displays the well-known ‘ conical wave’,
due to the change in the analytic form of the arrival across the cone £2|x|2 — a2(x3 +3) = 0. The
Rayleigh arrivals can also be obtained, by noting that D(£, 1) takes the place of |(£2,7)|. The
Rayleigh slowness curve C becomes the circle

G+83 = 1/ck, (2.6.19)
where the Rayleigh wave speed ¢y, satisfies the equation
D(cg, 1) = 0. (2.6.20)
Therefore, 80 = — (%, %) [ (cr |%]) (2.6.21)
and the parameter a of equation (2.2.36) takes the value
a=—cy. (2.6.22)

Therefore, equation (2.2.42) is relevant or, for U(t, x), equation (2.5.8). Together with (2.6.14),
the latter gives, for Ug(?, %),

(2) H(1 — o)} IS
Uss(t, x) ~ (QGRlxl)%ﬂzﬂvﬁDwRe{(t—-a+01) ;, (2.6.23)

as t—> |¥|[cy and x3 = 0, where

4 (1 1\¥/1 1\%/ 1 1 2 4 (2 1
2oglaa) @7 Gamm e g eow
The (11) arrival is more interesting as it is not isotropic:
(2m) ~F (1 —ck/B%)E (1 —3/|%]?) { 1% )"%}
Un (4, %) e D Re (t— g (2.6.25)

when x; = 0 and - |x|/cg. Not unexpectedly, this vanishes when x; = 0, corresponding to the
fact that the surface displacement of a Rayleigh wave has no ‘transverse’ component. The result
(2.6.25) yields a ‘radiation pattern’ which is consistent with one derived by Cherry (1962), from
a solution of the corresponding ‘time-harmonic’ problem.

The two-dimensional traction problem may be specialized similarly. It is obtained, for

example, from (2.5.11), that
()
(2.6.26)

[V Bs) (2
G ) e e

U33(i> x) = 2
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where 2,, £, arc defined by equations (2.6.12) with = v. The body-wave arrivals for Uy(t, x)
may now be obtained either directly from (2.2.26), or from (2.5.12); either method gives

Ualt®) ~ 3o, (|20 _/72|x|2] /[(2|Of|) ('g' t)%D(——ochI,v,\x,\)]}, (2.6.27)

as t— |«|/a, and

)~ ) R (G P (55 ) o

as t—> |#|/B. The expression (2.6.28) also displays a ‘conical wave’, due to the change in its
analytic form across the cone #2|x|? = a2(v,x,)% The Rayleigh arrival of U(Z, x) can be found
from (2.6.13), (2.6.14) and (2.5.13), if v, x, < 0; for example,

2 2\ & 2\ &
-l (-]
Uys(t, %) ~ A Do =) , (2.6.29)

1 ¢ 2\
Ugs(t,x) ~ 57kE D ﬁR(l E%) Slegt—|vaxa|), (2.6.30)

when x; = 0 and ¢ |v, x,|[cg, where D,, is given by equation (2.6.24).

3. THE HOMOGENEOUS DISPLACEMENT BOUNDARY-VALUE PROBLEM
3.1. The interfacial dislocation

The problem dual to that of §2.1 is defined by the equation of motion (2.1.3), the initial
conditions (2.1.4) and the boundary condition that the surface displacement is a given homo-
geneous function of degree #+ 1 in (¢, x,). However, this problem itself is a special case of one for
two dissimilar half-spaces, 3 > 0 with elastic moduli ¢;f;; and #3 < 0 with elastic moduli ¢jj5, on
whose interface there is a dislocation of strength 4(¢, x,), where 4(¢, x,) is a homogeneous function
of degree n+ 1. This dislocation problem is defined by equations of motion like (2.1.3) in either
half-space, the initial conditions (2.1.4) (for —oc0 < x;3 < 00) and the boundary conditions

[u+(t3 x) —u_<t> x)]m3=o = b(ta xoc),
ut(t,x) >0, |x5]—>o00, (3.1.1)

+ ot — = g -
Cyski u/c,llx3=0 = Ci3k1 u/c,l|x3=0 = Ti(t,x,) say,

where ut(t,x) is the displacement in the half-space x; > 0 and #~(f, %) that in the half-space
X < 0.
The interfacial traction vector 7(¢, x,) is not at the moment known but, proceeding as in § 2.1,
the Fourier transforms 4+(w, §,, x;) may be expressed in terms of its Fourier transform 7'(w, £,) as
B0, i) = (20 3 BV(0,E,) exp { ~i8 (0, £,) v} T(0, £,),
: (3.1.2)

6
R
2 B(0,8) exp{—it} (0,£) 5} T,

1 (0, £, 25) = (2m)%

where the matrices B*V(w, §,), B~N(w, £,) are as in equation (2.1.21), but with ¢, replaced by
¢ty Cijia tsepectively. The sum in the second of equations (3.1.2) ranges over N = 1, 2, 3 so that
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the transform remains finite as x5 — — 00 when w has positive imaginary part. Now by employing
the Fourier transform of (3.1.1),, it is obtained that

b(w,&,) = 2r)t A(0,&,) T(o, &), (3.1.3)
where d(w,§,) = Z BN(w,£,) — Z B~N(w,§,) (3.1.4)
and b(w, £,) denotes the Fourier transform of b(t, x,). Therefore,

T(w,&,) = 2m) 4470, £,) b(0,£,), (3.1.5)

and B0, i) = B B0, £) 470, £)5(0,£) exp (~18 (0, £) ),
N (3.1.6)
(0, Eo) = 3 BV0,£) 47(0,£)5(0,£) exp{~ 18 (0,£) 33

Now exploiting the homogeneity of 5(¢, x,), its Fourier transform can be calculated as

B0, £0) = = (2m) -4 (= iprogroo [LLEL D, (3.0.7)

where the Radon transform &(p, £,) is defined by the equation
£) = [[ 04,0 000~ €. s (3..9)

The transform (3.1.6) can now be reduced by exactly the method that was applied to the
expression (2.1.20) to yield

, 1 6 QN)’n+2B+N(_QN )A (QN»,? )

A Dyt(fx) = ——= 3 fﬁ st a) o) (— QN p) H(t—ty),

ey = o 2, Inl=1 1+ &5 o2, ) x4 ( ) H (;V)l 0
where now Fotd(z,9) = a<"+3> b(‘/;; 77“1 dj) (3.1.10)

The corresponding expression for '()%”“)u“(t, x) is similar. The right side of (3.1.9) can again be
shown to be real, by the argument that was applied to equation (2.1.35). The (n+ 1)th derivative
of the stress can be derived similarly. For example, if 7+(¢, x) denotes the column vector with
components o (¢, x), then

6

i
OVt (t &) = —— ‘(ﬁ ds
t () ) 2WN§4 Iyl=1

(QN)n 1 CHN(QN, 9) B+N(~QN, 1a) A7, 7,)
i+ gé\’g( H] 77) X3
x Fotd(— QN ) H(t—1y), (3.1.11)

where CHN(QN,7) = CHEN); &Y = (11, 70 /(RN 7). (3.1.12)

When ;3 tends to zero, 7+(¢, x) reduces to the interfacial traction vector T(¢, x,) and (3.1.11) gives

-£
oY Tt x,) = (27;) 4;'”'__1 ds Q1 4712 + 01, 9,) F®3(— 2~ 01, 9), (3.1.13)
in which 2 = —y,x,/t, since from equation (2.1.21),
6
> CHN(Q,9) BHN(Q,9) =i(2n)E L (3.1.14)
N=4

Equation (3.1.13) could also be obtained directly from (3.1.5).
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The body-wave arrivals associated with (3.1.9) are obtainable directly from the results of
§2.2; it is necessary only to set
T(w,£,) = — (27)~ (—1)» A-L(w, £,) 0+ f b(p,£.) dp (3.1.15)
pt+o
in the expressions (2.2.15), (2.2.19) and (2.2.26). There is, of course, no Rayleigh arrival because
the matrix 4w, £,) will be zero whenever

6 3
Bt= 3 B*YN or B-= Y BN
o N=t N=1
is singular.
3.2. The two-dimensional interfacial dislocation

In the formulation of § 3.1, it was assumed that the integral (3.1.8) exists. This is not true for

the special case in which
b(t, x,) = "1 (p), (3.2.1)

where P =vxft, (2.8.1)

but representations for «*t(¢, x) and u—(¢, x) for this case can be obtained {rom the results of § 2.3,
once an expression for 7(£2,7,) has been developed. First, a calculation of 4(£2, 3,) like the one
which led to equation (2.3.5) gives

5@,1) = (=)o ) begrn o) L -0 [SE2, (329

so that, from (3.1.5), T(2,7,) is (3.2.2) premultiplied by (2r)~% A-1(,,). This is similar in
form to (2.8.5) and so the reduction corresponding to (2.3.7) can be carried out at sight to give

+ 8 (‘Q )n—l-zB+ (‘Q sV )A—I(Q ¢ ) b(p) d[)
(n-4-2) ) — -3 ( _ a 2 o) An42) § 2N L —
Oy t(t, x) = 2(2m)~3 (—1)7 §=',4Im{ TR EY (2N, ) 7, oy ? QN}H((t In)s
3.2.3)
where QV = QN(v). Thus; if G®+3(z, ) is defined as
1 b([)) d[)
(n+2) — (n-+2)
G +3(z, 9) 5 iaz P (3.2.4)

equation (3.2.3) becomes
(QV)t2 BHN(QN, v,) A2V, v,)
t+ £ (Y, v) %y

6
0P yt(t x) = —2(2n)~2 Y, Re{

Gosn(— 2N, )| H(t—ty)
N=4

(3.2.5)
which is similar in form to (2.3.9).
The (n+ 1)th derivative of the traction vector 7+(¢, ) which was introduced in the preceding
section can be calculated similarly as
o1,
6 (QN)n+L CHN(QN p) BHN(QN p,) A7V, v,)
= —9(27)-2 R > s Va s Va
() 3 Re| S NCAF

Goid(— OV, v)} Hit—ty).

(3.2.6)
When #; tends to zero, (3.2.6) reduces to

_ 2(2m)~% (—1)

o+ T(t, 1, S Im (A (= p 0L v) G — 03}, (3.2.7)

where p is given by (2.3.1), since 2V ——p + 0i and (3.1.14) holds.
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The body-wave arrivals associated with (3.2.5) can be found by the method of § 2.4; the result
which corresponds to (2.4.16) is
a(tn+2) u+(t, x) ~ — 2(2,.:) —2Re {( Qo)n+2 B+N( 2% v,) A—l( 00p,) G(n+2)( — 00, )
X [285] aa(1, 5%) %5 — 1) ] 4} sgn [£3 0o (1, 5], (3.2.8)

as {—>t,, the notation being that employed in § 2.4.

4. SOME SIMPLE MIXED BOUNDARY-VALUE PROBLEMS
4.1. A generalization of Boussinesq’s problem
For the half-space x5 > 0, suppose that the displacement field satisfies the equation of motion
(2.1.3), the initial conditions (2.1.4) and the mixed boundary conditions
Costalhy,(H%) =0, (x5 =0, all wx,%x, a=12),
Cograthy, (%) = 0 (x5 =0, x¢S(1)),

(4.1.1)
u3(t, x) = wn+1(t’ Xy) (xeS(t)),
u(t,x) > 0; (|x| >0),
where S(f) is the surface %3 =0, s3x2+s3x2 <2 (4.1.2)

and is ‘subsonic’ in the sense of § 2.2, and w,, 4 (¢, x,) is a homogeneous polynomial of degree 7 + 1
in (¢,x,). This problem is a dynamical extension of the problem of the static indentation of
a half-space by a smooth punch, the prototype of which was solved by Boussinesq in 1885 (see, for
instance, Love 1944). The original static problem appears as a limiting case of the one defined
above, when the density p of the half-space is made to tend to zero, so that the equation of motion
(2.1.3) reduces to the equation of equilibrium and the role of the variable ¢ reduces to that of
a parameter. The boundary conditions (4.1.1) imply that the surface traction 77(¢,x,) has only
one non-zero component, Ty(,x,) and that its support is S(¢). If T5(t,x,) could be found, the
problem would be solved immediately from the results of § 2, and the object of the present section
is to set up and solve an integral equation for Ty(f, x,). It will emerge that the structure of the
integral equation is the same in the general case as in the static limit, so that a unified approach
to either the static or dynamic problem is obtained. The solution of the full problem will then
follow as a straightforward extension of the static solution of Willis (1967).

The simple structure of the problem is a consequence of Betti’s theorem, which implies that

U(t,x) = UT(t, —x) (x3=0), (4.1.3)
where U(t, x) is the solution of Lamb’s problem (that is, the Green matrix for surface loading of

the half-space) and U™ denotes the transpose of U. Therefore, from the definition of B(w, £,) as
the Fourier transform of U(¢, x) with x3 = 0,

B(‘Q3 770;) = BT(‘Q3 _"h)’ (4’1’4)
Also, if 2 is real and |2] < ¢(74, 75, 0) (4.1.5)
for all wave speeds ¢, the equation |K(2,7,&)] =0 (4.1.6)

has complex roots &Y and since only 92 appears in (4.1.5),

V(2 +0i,9) = F(—2+0i,7) (4.1.7)

31 Vol. 274. A.
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460 J. R. WILLIS

for some M not necessarily equal to N but still in the range (4, 5, 6) if N is in this range, since then
£ has negative imaginary part. If the restriction (4.1.4) does not hold, (4.1.7) remains valid
but then, since £}’ could be real, M need not lie in the range (4, 5, 6) whenever N does. Now from
(4.1.7) and the definition (2.1.21) of BY,

BN(Q2+0i,7,) = BM(—£2+01,7,) (4.1.8)
and so, whenever (4.1.5) holds, (4.1.4) and (4.1.8) imply
B(—-Q2+0i, —n,) = BT(2+0i,7,). (4.1.9)

Also, the argument following equation (2.1.36) shows that
B(~8, —n,) = B(2,1,) (4.1.10)
for any £, and so B(2+0i,7,) = BY(2+0i,7,). (4.1.11)

Thus, the matrix B(£2+ 0i,7,) is hermitian. In particular, B;3(2+0i,7,) is a real and even
function, both of £ and 7,. All of these properties can, of course, be recognized explicitly from
equations (2.6.13) and (2.6.14) which relate to an isotropic half-space.

To proceed now with the solution, the boundary conditions (4.1.1) define a field u(¢, x) which
is homogeneous of degree n + 1. Therefore, 7'(t, x,) is homogeneous of degree n and the representa-
tion (2.1.35), inplies

3 ' n+2
a%n+2>u3<t,x)2_@5(;%10131{6{(_23&) 333(__14_A+0 7,)mm>(m ) Ow)}

(4.1.12)

when x; = 0, where F{rtd(z,9) = E)‘”“)f%c—l‘g, (4.1.13)
since 17 = T, = 0. The insertion of the ‘real part’ sign was justified after equation (2.1.36). Now
when x€S8(£), Bas( —ny %3/t + 01, 7,) is real, by (4.1.11). Since T5(p, %) is real, it now follows from
the Plemelj formulae (Muskhelishvili 1953) that

3 n+2
a%”*'z)us(t, x) = % (g) %] l 1d5 ( — ,}—7—’—1;4) Bas( 1A% + 01,7 ) T:(sn+2) (‘?}tx—h’ 77) ) (4'1'14)
7= y

when xe€S(¢), where TE+2(Q, ) = @D Ty(2,7). (4.1.15)

The remarkably simple representation (4.1.14) that is provided by use of the Radon transform
has not been given before for a dynamical problem, but a similar representation for a related
static problem was given by Willis (1970). The only change that appears in (4.1.14) in the static
limit (p -+ 0) is that Bggreduces to a function of 77, only, since the first argument is always combined
with the density p.

It can now be observed that, if 7%(£2, %) is a polynomial of degree z+ 1 in 2, then

ot yu(t, x) = 0, (4.1.16)

when x€S(¢). A representation analogous to (4.1.14) can also be found for any derivative of
order n+ 2 of u(¢, x). The steps are identical with those given for the case already worked out and
give the result

1 3
atpag‘lagﬁu:’;(t’x) =_t(:g) ﬁ?]l 1ds(—ﬂt-&) 771"72333( 2! A+Ol>77a) T(n+2>( AtxA "7): (4.1.17)
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SELF-SIMILAR PROBLEMS IN ELASTODYNAMICS 461

when xeS$(¢) and p+¢+r = n+2. This also vanishes when 73(£2,7) is a polynomial of degree
n+1in Q. In this case, therefore, all of the derivatives of order n + 2 of us(, x4, %5, 0) are zero and
hence u3(t, x) is a polynomial of degree n+ 1 in (¢, x,) when x €S5(f). Now an explicit calculation
was performed by Willis (1970) to show that the function

Ty(y) = (5191 +15292)% (5141 —155Y5)@ (1 —s3y3 — s3y3) % (4.1.18)

has Radon transform

m (93 g3\t .
14(@,) = ;% (B B) " H - (4 +idg -0

5 S ! P\ (Q\ [ M+N \ [1—v2\ D
> — 1)3M+N) 11— PN
* o T (M) (N) (%(M+N))( 4 ) v > (4.1.19)
in, = (M 31\ (7R B\
where Ay Hidy = (51 + 5 ) (s% +x§) (4.1.20)
_o(n 37_%)_%
and v & (.S‘% +S§ . (4.1.21)

Therefore, since any T(y) of the form

T3(y) = Puia(y) (1—siyt—s3y3) %, (4.1.22)
where P, is a polynomial of degree n+ 1, can be expressed as a sum of terms like (4.1.18), the
traction

Ty(t, %) = "Py1a(y) (1 —siyi—siy3) (4.1.23)
which is homogeneous of degree 7 in (¢, x,), produces a normal displacement uy4(?, x) over S(¢)
which is a homogeneous polynomial of degree # + 1 in (¢, x,). Further, the form (4.1.23) contains
sufficient arbitrary constants to generate any homogeneous polynomial u4(Z, x,), so that the
solution to the problem (4.1.1) always has the form (4.1.23). Finally, since any polynomial can
be expressed as a sum of homogeneous polynomials, this restriction may now be dropped and the
following result is obtained:

The traction
Tyt %) = Prya(t, 5,) (12— 5323 — s348) = H(£* — 533 — s343) (4.1.24)
produces a normal displacement of the form
us(t, %) = Quya(t, x,) (4.1.25)

over S(t), where P, (4, %,), Q,41(%, %,) are polynomials of degree n + 1. This result, which applies
for a half-space of any anisotropy, generalizes the corresponding static result of Willis (1967),
which was itself a generalization of a result for an isotropic half-space, termed ‘ Galin’s theorem’
by Sneddon (1966). Of course, if @,.,,(¢,%,) is specified, there remains the task of finding the
coefficients in P, (¢, x,). The problem has thus been reduced to one of solving a set of linear
algebraic equations, which are obtained by integrating (4.1.12) for a traction T of the form
(4.1.23). This will not be discussed further here, but an example will be worked out in § 4.4 below.

4.2, The two-dimensional problem

A similar development may be given for the corresponding two-dimensional problem, in
which §(¢) is the strip
Pzl < 7%, (4.2.1)
31-2
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462 J. R. WILLIS
where V is subsonic, and w,, (¢, ¥,) depends only on (¢, v,%,), so that
Wy 1 ,) = "Fw(p), (4.2.2)

where p is defined by equation (2.3.1). Although w, (¢, %,) is required to be homogeneous of
degree n + 1, the restriction to polynomial form will be relaxed, so that w(p) may be any sufficiently
smooth function. In this case, 77 = 7, = 0 and

Ty(t,x,) = T(p), (4.2.3)

where the unknown function T5(p) is zero for |p| > V. An integral equation for T3(p) can be
developed from equation (2.3.9) which gives, when x3 = 0,

ofrro (1) = 2277 Im{( _K&;‘_A)"’Lz By (—Kétﬁ +0i, va) Gy (ﬁt—"i —0i, V)} (4.2.4)
where G (z,v) = i—iagwm Zjb(_’il;j"b . (4.2.5)
When x € S(), uy(t, %) = w,1(t, x,) and 0D uy (2, x,) has the form

0Dy (8, x) = wmtA(p) [t (4.2.6)
where wmtA(p) = 0P +tDuy(1,y)  (yeS(1)).
Also, when }ceS (¢), Bsg is real and so (4.1.29) furnishes the Hilbert problem

WD (p) = —i(2m) H(—p)™+* Byy(—p+ 01, v,) {GE (o + 04, v) + GEH0(p— 04, v)}  ([pl < V),
(4.2.7)
for G**V(z,v). From its definition (4.1.30), G{**V(z,v) is holomorphic in the z-plane cut along

the interval (— ¥, V) of the real axis, is O(z~"?) as |z| =0 and has singularities no worse than
(zF V)= 2+ at z = + V, where 6 > 0, provided that

Ty(p) ~ AV —p)",

as p— V, with a similar condition as p —— V. The general solution of the Hilbert problem (4.2.7)
may now be deduced (Muskhelishvili 1953) as

741 — -n—2 1 - 2 2 v w(”+2)(p) dp
G(z,v) = (—2) {(—1) (2n)- ¥ (22T )%I—VBas(“p"'Oi’ vy (VE=pBE (p—1)

+Byial) @V, (4.2.)

where P, 5(2) is a polynomial of degree 27+ 3 in z, whose coefficients must be chosen so that
Gt (z,v) is finite at z = 0 but otherwise are arbitrary and thus are available for adjusting
us(t, x) which is obtained by integration of (4.2.4), to its required form. Although knowledge of
G+ (z, v) is sufficient for the calculation of 0" *®u(¢, x) throughout the half-space, T3(p) itself will
normally be required. To find T5(p), it is necessary first to integrate G*+V(z, v) n+ 1 times with
respect to z to give G4(z, v), from which T;(p) follows from the Plemelj formulae as

Ty(p) = Gylp+0i,») — Gy(p— 01, v). (4.2.9)
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A detailed example will be given in § 4.4. This section will now be concluded with a brief general
discussion of the case where w,,,,(, %,) is a polynomial, so that w™+2(p) = 0. GF**V(z, ») is now
finite at the origin if P,, 5(2) contains z"*2 as a factor. Thus,

GI0(2,0) = Bya(2) (2~ V9, (4.2.10

where P,,,(z) is a polynomial of degree n+ 1. Integrating (4.2.10) now leads to a result of the
form

Gy(z,v) = Quia(2) (22— V) H+ Ry(2), (4.2.11)
where @,,,,, R, are polynomials of the degree indicated, so that, from (4.2.9),

Ty(p) = — 2iQuua(p) (V2=p*)% (Ipl < V). (4.2.12)

Thus, the traction T5(t, x,) = t"T4(p) produces a normal displacement over S(t) which is a homo-
geneous polynomial of degree n+1 in (¢,v,,). Finally, the restriction to homogeneous poly-
nomials may be relaxed to give aresult of the same form as that obtained for the three-dimensional
problem:

The traction Ts(t, %,) = Prpia(ty vyxy) (V22— (v,%,)2)F H(VE—|v,4,]) (4.2.13)

produces a normal displacement over S$(¢) of the form
u3(t’ JC) = Q'n+1(t: Va;xoc>> (4‘214)

where P, ., @, are polynomials of degree n+ 1 in their arguments.

4.3. The axisymmetric  smooth punch’ problem

If the half-space is isotropic or, more generally, transversely isotropic with the xg-axis as its
axis of symmetry, the function By3(2 + 0i,7,) is independent of 7, (see equations (2.6.13) and
(2.6.14) for an isotropic half-space), and an axisymmetric specialization of the problem discussed
in §4.1 can be defined. We take S(¢) to be the surface

x3=0, r<Ti (4.3.1)
where 2 = 2+ 1% and V is subsonic, and let
uy(t, x) = »Hw(rft)  (xeS(t)), (4.3.2)

in which w is any sufficiently smooth function. With these restrictions, equations (2.1.3), (2.1.4)
and (4.1.1) define an axisymmetric state of stress, and T’(¢, x,) has the form

Ty(t, x,) = " T(q), (4.3.3)
where q =1/t (4.3.4)

for some function T}. The Radon transform 7'4(8, 3) is independent of 7 and can be expressed as

T,(2) = 2[97;%({%%%. (4.3.5)

Equation (4.3.5) is of Abel type and can be inverted immediately to give

To(V) 1(7dTy(Q) de
T*(q)=m‘;fq dQ  (@—-¢)¥

(4.3.6)

which can also be obtained, with a little more effort, from the general inversion formula (A 5).
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Equation (4.1.14) also reduces to an equation of Abel type, since 9 now appearsin the integrand
of the right side only in the combination (#,x,/t). Thus, upon defining w™+?(q) by the relation

OB ug(t, x) = (1/H) w+(g), (xeS(), (4.3.7)
and setting £ = qcos, (4.3.8)
equation (4.1.14) takes the form
wWrD(g) = 2(2m) f ‘ @%)- (— Q)2 By — Q4 0f) Tg+(Q). (4.3.9)
This can be inverted to give
. mi9(0)  Q (edumid(g)  d
1(_ Oyn+2 _ (n+2) _w ( o q q
(27)} (— Q) +2 Byy(— Q + 0i) T¢2(Q) . fo & =t (4.3.10)
It is easy to show from its definition (4.3.7) that
w(n+2)(q) = 0(qn+2) (4.3_11)
as ¢— 0. Hence
(2 (0} — (=t 2duwB(q)  dg
T30) = Gty — 0+ @), g (@) (4.3.12)

and is bounded since the integral in (4.8.12) is O(27+1) as Q0. The Radon transform 77 (2)
follows by integrating (4.3.12) n+ 2 times, and is determined in this way up to a polynomial of
degree n+1 in 2, whose coeflicients must be adjusted so that the displacement u,(¢, x) takes the
desired values over S(¢). This is effected by substituting 7'3(2) into (4.1.12), integrating n + 2
times with respect to ¢ and then choosing the coefficients accordingly; the procedure is always
possible because w™+?(g) determines uy(t, x) uniquely up to a homogeneous polynomial of degree
n+1in (4,7), when x€S(z).

It is interesting to note that the case w»+?(¢) = 01is more than a particular case of the problem
of § 4.1 since it includes, for example,

ug(t,x) = ar—Ut (r < Vt), (4.3.13)
which is not a polynomial in (¢, x,). For (4.3.13), n = 0 and (4.3.12) implies
T4(Q) = C+DQ (4.3.14)

for some C and D. Hence, from (4.3.6),

C+DV __D_ln{Vq_(Vz__qz)%.}

L9 = cm—gm ; (4.3.15)

k'

so that T is singular when 7 = Vt unless
C+DV =o. (4.3.16)

Vit (Vztz——rz)%}

(4.3.17)

| —-D
In this case, Ty(t,%,) = - ln{ .

and D and ¥V may be adjusted to match & and U in (4.8.13). This solves the problem of indenta-
tion by a conical indentor, of semi-angle 4w —a, moving with speed U into the half-space.
A detailed solution of this problem was given by Kostrov (19644), but the method that was
employed involved some ingenious guess-work and could not obviously be extended to deal with
the general displacement (4.3.2).
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4.4. Examples
(a) The three-dimensional flat punch’ (n = —1)

As a simple illustration of the theory of § 4.1, consider the dynamical extension of Boussinesq’s
original problem, taking

us(t, x) = uy, xeS(t), (4.4.1)
where # is a constant and S(f) is the expanding ellipse (4.1.2). In this case, n = —1 and
Ty(ty ) = Tyl — 33— s3a8) -} H(2 — 5348 — 3ad), (4.4.2)

where Ty is a constant. The Radon transform 7'5(2, ) is given from (4.1.19) as

Ty

T4(2,7) = —2=— H[(w,(7))2 - 22], 4.4.3
'1( 77) 5152‘00(77) [( 0(77)) ] ( )
2 2\ }
where wo(n) = (?—%1+;7—§) . (4.4.4)
. ) T,
Correspondingly, Fi(z,n) = (4.4.5)

isy Sl (@o(m))2 —2%]"

Hence, by taking the real part of (2.1.37) withn = —1,

_ Tem)t 8 “ Bi5(2,7.)
u(t,x) = ———— 3 dsIm de . (4.4.6)
Inl=1 LACER))

S182 N=4 wi— 02?2

When %3 = 0 and ¢ = 3, (4.4.6) gives

_ Ty(2m)} e Bgs(—£2+ 04, Wa)}
tts2) = _Syffm:lds ImU—wa/tdQ wf—(2-0i)* | (4.47)

Now Bgy(— 2+ 0i,7,) is real when 2 is real and || is smaller than ¢y (#), the speed of Rayleigh
waves in the direction 5. Hence, when x € §(2), the range of integration with respect to 2 can be
split into two parts, ( —7,x,/¢,¢) and (¢, 00), in which —7,%,[t < ¢ < cg(7), and the integral over
the former part can be reduced by the Plemelj formulae to give

oy — To(zﬁ)% 7 B3 — wy(7) + 01, 7,) { © Bas(=L240i,7,) ]
us(t3) =t = L2 ffMI:lds[_ T +Im f e } . (4.4.8)

Equation (4.4.8) shows explicitly that u4(t, x) is constant over S(¢) and relates T to u,. The
function Bys(—£2+ 0i,7,) has a pole at £ = ¢y(7) and the integral with respect to £ in (4.4.8) is
best determined numerically by deforming the contour in the lower half of the complex £2-plane.

(b) Dynamic indentation by a wedge

A two-dimensional problem of some practical interest that has not been solved before involves
the indentation of a half-space by a smooth rigid wedge moving uniformly. The corresponding
three-dimensional problem of indentation by a cone was solved by Kostrov (19644) and was
briefly reviewed in § 4.3. For the wedge problem,

us(t, x) = a|vyxy| = Ut (xe€8(1)), (4.4.9)
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where the wdege has semiangle {w—a and moves into the half-space with speed U, making
contact along the line v, x, = 0 at time ¢ = 0. The surface S(¢) here has the form

x3 = O, lVAxAI < Vt, (4:.4:.10)

where Vis not known in advance, but is determined by the requirement that the pressure distri-
bution beneath the wedge should tend to zero at the edge of the region of contact, |v,x,| = Vi.
For the boundary condition (4.4.9), n = 0 and equation (4.2.7) implies

PGy (p+0i,v) —pCy(p— 0L, v) = 0 ([p| < V), (4.4.11)

which defines a homogeneous Hilbert problem for the function 22G3(z,v). From (2.3.8), the
function z2G(z, v) is O(1) as |z| >0 and is O((zF V)~'1%) as z— + V, where 8 > 0, since T3(p) — 0
as p—+ V. Hence,

C+Dz

22Gy(z,v) = m,

(4.4.12)

where C'and D are arbitrary. But it is also reasonable to require T5(p) to be integrable near p = 0,
and hence C = 0. Thus,

, D
G3(Z, V) = :Z_(,—ZE—:VZ—)—% (4.4.13)
_iD . ((2— V)b 4iV
and Ga(z, V) = Wln{m} . (4414)
Therefore, by the Plemelj formulae,
_iD, (V4 (V2 —pi _ 2D V4 (V2 —p2)i
T3(p) ——VIH{V—(VZ—pZ)%} = vV 1 {——]ﬂ——_—}’ (4.4.15)

which has precisely the same form as for the conical indentor, equation (4.3.17). The total
resultant pressure P per unit length of indentor is given by integrating (4.4.15); we have

v v
Pe—("" Ty,x) dmxy) = 1 j Ty(p) dp = —2miDL. (4.4.16)
—vt -V
To fix the constant D (or P) and V, equation (4.2.4) with n = 0 must be integrated twice with
respect to ¢. Integrating once, changing the variable of integration to 2 = v, x,/t, gives

Qutty(ty %) |pp0 = 2(2m) 2P| dORe

vaxAft

=B33(—Q+0i, Va)}. (4.4.17)

(CEOEE AT

Now Bg,(— £+ 0i,v,) is real, and hence the integrand is zero, if | 2| < V. Also, it is easily shown
from equations (4.1.4) and (4.1.10) that the real part of Bgg( — 2 + 0i, v,,) is an even function of £2.
while [(2 — 0i)2— V2]% is odd if |©2| > V. Therefore, the upper limit oo can be replaced by — oo,
by deforming the contour of integration, and replacing £ by — £ then shows that the lower limit
v, x,/t may be replaced by —v,x,/t, or by its modulus, showing explicitly that the right side of
(4.4.17) defines an even function of (v,x,). Integrating (4.4.17) with respect to time, changing
the order of integration and employing |v, x,|/¢ as lower limit now gives

st ao (-t nefBe(= 220
(1, )|y 0 = 2(27) Pflwﬂd,o(t % Re{[(g_oi)z_m]%, (4.4.18)
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SELF-SIMILAR PROBLEMS IN ELASTODYNAMICS 467

where the upper limit of integration has been replaced by ¢,,(v), the greatest speed of propagation
of plane waves in the direction v, since Bgg(—£2+0i,v) is imaginary for 2 > ¢, (v). Hence,
finally, when |v,x,| < V1,

. (V) By, (— 2+ 0i,v,)
= — = -3 @ IVAx/\I 33 s Vo
Ug(t, %) | gymo = @ |[va 22| — Ut = 2(2m) PRe{JV dQ(t— 0 =7t | (4.4.19)

which determines P and V in terms of « and U. Again, the integral in (4.4.19) is best evaluated
by deforming the contour to avoid passing close to the Rayleigh pole of Bgy(— 24 0i,v,).

4.5. Crack problems for an infinite homogeneous medium

Suppose that an infinite homogeneous medium is loaded in a way that would produce a stress
field o%(t, x), which is homogeneous of degree 7 in (Z, x), if no crack were present. Now suppose
that a crack appears at the origin at time /= 0, and subsequently expands to cover the
surface §(¢): 3y = 0, 23453 < 2 (4.1.2)
The presence of the crack induces additional stress and displacement fields o7;(Z, x), ;(¢, %),
which are homogeneous of degrees n and n + 1 respectively. These additional fields must satisfy
the equation of motion (2.1.3), the initial conditions (2.1.4) and the mixed boundary conditions

Ot %) = Cogqttyi(8, %) = =Tt %,)  (x€S(8)),
[u(t, 2)]5=25 = 0 (x¢S(0), (4.5.1)
u(t,x) >0 (|x| - 00),

where 798, x,) = 0%(t, %1, %5, 0). (4.5.2)

The first of equations (4.5.1) ensures that the total traction o3+ 073 is zero on the crack faces,
while the second states that the displacement is continuous except across the crack. If the dis-
continuity in u(Z, x) across the crack were known, say

[u(ta x)] = b(t’ xa)a (4.5.3)

where b(¢, x,) is zero outside S(¢), the problem would be reduced to a particular case of that of
§ 3.1, with the two half-spaces identical. In particular, equation (3.1.13) would give

-5 n+1
o Tt x,) = 2 4; ds(_ﬂ_a@) Re { A_l(_wwi, %) Fonso (M_Oi, ,7)}
¢ =1 t t ¢
(4.5.4)

the insertion of the ‘real part’ sign being justified by reasoning like that following equation
(2.1.36). Now , ]
Y BN(Q+0i, —n,) =~ ¥ BW(Q2+0i17,), (4.5.5)
N=1 N=4

since F(Q+01, —,) = —E(2+0i,7,)

for some M in the range (4, 5, 6) if N is in the range (1, 2, 3). Therefore, 4(£2 + 0i,7,) is an even
function of 7 and equation (4.1.4) now implies that 4(£+ 0i,7,) is symmetric, and hence real
when Q1is subsonic. Therefore, when x€S8(¢), A=*(—7,x,/t+ 0i,7,) is real and equation (4.5.4)
simplifies upon use of the Plemelj formulae to

(2m)

n+1
A Tt x,) = — § ds ( _ M) A-1 ( N ELEN %) Jn+9) (M’ ,70‘) , (4.5.6)
2t I7l=1 ¢ t t

32 Vol. 274. A.
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468 J. R. WILLIS
where bt (Q, ) = D B(Q, 9,) (4.5.7)

and 5(2,7,) is the Radon transform of (¢, x,). Equation (4.5.6) is an integral equation for
b+3(Q, 77,), and hence implicitly for b(t, x,). Its similarity to (4.1.14) may be noted, and a result
corresponding to that summarized in equations (4.1.24) and (4.1.25) may be proved for the
present problem. If
bty x,) = Palty ) (8= 53— s3ad) ) H(B — 533 — s3a), (4.6.8)
where P, is a homogeneous polynomial of degree n, then 4(¢,x,) is bounded and its Radon
transform 4(£2, 7,) is a polynomial of degree z + 2 in 2. The right side of equation (4.5.6) is there-
fore zero, and the following result is obtained immediately:
The relative displacement (4.5.8) across S(¢) is produced by a traction across S(¢) of the form

T(t> xa) = Qn(t> xa)> ‘ (4'5'9)

where @, is a polynomial of degree n. The restriction to homogeneous polynomials 7, and @,
may be dropped, since any polynomial is a sum of homogeneous polynomials.

The coeflicientsin £, may be related to those in @, by integrating equation (4.5.4) with respect
to time. Details will not be pursued at this point but some examples will be discussed in § 4.7.

The above result is the most general that is known for truly three-dimensional situations
(problems with axial symmetry are discussed in § 4.6). Burridge & Willis (1969) have previously
derived the result for the case n = 0 (constant loading at infinity), generalizing the results of
Kostrov (19645, ¢) for a circular crack in an isotropic medium, but the method that was employed
was less systematic than the one presented above.

A corresponding treatment may be given for the two-dimensional problem, in which S(¢) is

the surface =0, |va| < Vi (4.4.10)

and T(t,x,) =t"T(p), (2.3.2)

where V is subsonic, p = v, x,/t and T(p) is given for |p| < V. In this case, when x€S(¢),

oI Tt x,) = TOH(p), say, (4.5.10)
and equation (8.2.7) implies

qoinp) = C D" puin g 03, ) (G0(p— 05, ) + GHF0p4 05, )}, (4.5.11)

which is a Hilbert problem for zr+1G®+2(z, v), to be solved subject to the conditions

RGO H(z,v) = 0(z7%)  (|z] ),
GO (2, 1) = O[(zF V) 2] (z—+ V)}

(4.5.12)

for some & > 0, since b(¢, x,) tends to zero as |v,x,| = Vi. The most general admissible solution
of (4.5.11) is therefore
v — ; (n+1) 2 p2\4
GOz, y) = i(2m)E (— 1) (22— Vz)_.;f A(—p+0i, v,) 7[; Z(l’) (F2—p*)2dp
—V —_
+ Py ya(2) (22— V)4, (4.5.13)

where Py, ., is a polynomial of degree 2z + 1 whose coeflicients must be chosen so that G™+?(z, v)
is finite at z = 0 and so that G®+?(z, v) leads to the desired 77(¢, x,). Again, an example will be
given in §4.7.
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SELF-SIMILAR PROBLEMS IN ELASTODYNAMICS 469
1f T'(t,x,) is a homogeneous polynomial of degree = in (£, v,x,), then T@+D(p) = 0 and
G™d(z, 1) = P,(z) (22— V?)—n-3, (4.5.14)

where P, is a polynomial of degree #. Equation (4.5.14) may be integrated to give a result of
the form

G(‘z’ V) = Qn(z) (Zz - Vz)% + Rn+1(z)’ (4'5'15)
where @, and R, ,; are polynomials of the degrees indicated. The Plemelj formulae now give
b(p) = 2iQu(p) (V2—p*)3, (4.5.16)

so that the traction 77(¢,,) produces the relative displacement b(t, x,) = i+15(p), which is
similar in form to (4.5.8). The restriction to homogeneous polynomials may once more be
relaxed, to yield the result:

The traction T(t, %) = Py(t,vyx)) (4.5.17)

over S(t) produces the relative displacement
b(t, %) = Qu(tyvaxa) (V32— (nax) ) (4.5.18)

over S(¢), where P, and @, are polynomials of degree n.

Two-dimensional problems have been previously treated less generally by Broberg (1960),
Craggs (1963 6) and Atkinson (1967), all for a crack in an isotropic body, and by Atkinson (1963)
for a crack in an orthotropic body. All of these auvthors discussed only the case n = 0, for purely
tensile loading.

4.6. Axisymmetric crack problems

If the medium is isotropic, or transversely isotropic about the xs-axis, then B(R,7,) has the

form given in equation (2.6.13) and 4(£ + 0i,7,) is twice its even part. Thus,

btens,  —cny7y O
AQ+0i,9,) =2 | =y, b+oni,  Of, (4.6.1)
0, 0, e

in which &, ¢ and ¢ are functions of 2 that are real and even when £ is subsonic.
Now let §(¢) be the circle

¥3=0, r< T, (4.3.1)
where 7 = (x+13)%, and let
xy[r — X1 0
T(t,x,) = t"T.(q) | %ofr| +"To(q) | xfr | +1T4(q) |O], (4.6.2)
0 0 1

where ¢ = rft. Correspondingly, the relative displacement 4(¢, x,) has the form

Xy [1 — Xofr 0
bty %) = 7018,(q) |mofr| +6018,(q) | myr | +emsisy(q) |o]. (4.6.3)
0 0 1

The Radon transform of 4(¢, x,,) is now easily calculated as

M1 — N 0
b(2,7,) = b,(2) |m2| +86(2) | 70 | +8:(Q) |0], (4.6.4)
0 0 1

32-2
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_d¢
where b.0@) = 22 bol0) =y,
d (4.6.5)
- q44
o by (Q) =2 b3()(q oD
with inverses
b o 0 [Tl (@)Q) 2
r,a(Q) - "; . do (Qz_qz)%.,
(4.6.6)
bo(g) = —2 vdb,(2) dQ
‘ o\ =73, Tde @E—pHi
A simple calculation now shows that
T — 175
. v ot (— 0 o _ 0 oo (— 0
A0, B9~ = g )+ | o, ———z(e o], ..
0 0 1

and equation (4.5.6) reduces, upon introducing 2 = 7,x,/t as a variable of integration, to a form
which is equivalent to

—1)n(2r) ! fag +e e
T7(7L+l) — ( E(n +3) 0
() - =52 @ g
iny oy (— ) (2n)E faOmi do
To (q) - q b+6 bﬁ (Q) (gz—QZ)é’ (4.6.8)
de
(n-+1) = (— J(n+3)
T0(g) = (— 1)1 (2m)-4 f 2 gpo0) ot

where T{**1)(q) is the radial component of  9{*+? T'(¢, x,), and so on. Equations (4.6.8) are three
uncoupled equations of Abel type, and a complete solution of the problem now follows in the
same way as that for the dual problem discussed in § 4.3. It may be noted that, for an isotropic

medium,
(b+0) = (2m) = (22— 1)}/ (ip),

so that the second of equations (4.6.8), which governs the torsional component, involves only
the shear modulus #.

Axisymmetric problems have not been treated before at the present level of generality. The
only available formulation of a problem for non-uniform loading is that of Atkinson & Innes
(1969), who briefly sketched a method of solving problems for non-uniform tensile loading, with
n = 0, for an isotropic half-space. They constructed an equation of Abel type by forming a super-
position of a rather complicated one-parameter family of solutions that had been found by
Webb & Atkinson (1969).

4.7. Examples
(a) Constant loading at infinity (n = 0)

As a first example, consider the particular case of the three-dimensional problem discussed

in § 4.5 for which #n = 0. Then 7° is constant over S(¢),

b(t,x,) = b(2—s3xf—s3a3) % H(£2 — s3x3 — 5343), (4.7.1)

where 4 is a constant vector, and use of (4.1.19) shows that

br (1 Qz)H(ug—j), (4.7.2)

251550 w§ 0

b(2,n,) =
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where w,(7) is given by equation (4.4.4). A straightforward calculation now gives

20

is) o(w§ — 2%)%’

FO(z,9) = (4.7.3)

so that, from equation (4.5.4),

_.% 27 —!
8, Tt x,) = 22%) fﬁm:lds(@%) Re{iA—x(_%wi, na)b[wg_(lt’}ﬁ‘-m) ;] 2}. (4.7.4)

$1S89t

Hence, by integrating with respect to time, putting 2 = 7,x,/t,

T(t,xa)=-29lc>—_—%§ dsRe{if ” dQA—l(—.Q+Oi,17a)b[wg—(Q—Oi)z]-z}, (4.7.5)
Igl=1 NaZalt

$152
which is independent of x when x € S(¢). The vector b is therefore determined from the equation

_..g. ©
2—(—21)——4; dsRe{if dA4-1(-02+0i,7,) b[w— (Q—Oi)z]“2} = —70 (4.7.6)
$1852 J Inl=1 0
The elastic arrivals are then given by equation (2.2.15), (2.2.19) or (2.2.26), with n = 0 and

A Hw,6,)b
25, 55] (0 (£))* — 0¥

A further singularity of some interest is thatin 7'(¢, x,) when x lies just outside S(#). This is probably
easiest to obtain by first transforming the integral in (4.7.4) to an integral around the ‘slowness
curve’ C of the crack, defined by the equation

w(g) = 1. (4.7.8)

Use of the homogeneity of the integrand then gives

0, T(t,x,) = — 22 3§C IVdaiol (gtx) Re{iA—l(_%-xﬁwi, ga) b [1 - (gatx“wi)z] _2}, (4.7.9)

S1598

T(w,8,) =

(4.7.7)

which shows that 9, T(¢, x,) is singular at the time ¢ = ¢, = (s34} + s343)%, when the line
t+Ex, =0 (4.7.10)
touches the curve C, at the point £ say. Therefore, as ¢t ¢,

4(2m)-%

0 Tt x) ~ 518510 [V,

Re {1A~—1(1 01,9 b f e ds [1 - (g_tx_ + Oi)z] _2} , (4.7.11)

where 47(£9) is a small arc of C containing the point {° and use has been made of the fact that
the singularities at £ and — &° contribute equally. The integrand of equation (4.7.11) may now
be replaced asymptotically by — 4£,0,[1+ &, x,/t+ 0i] %, after which an integration with respect
to time yields

(2m)1 { B ¢, .—1}
Tt ) ~ T Relid (1401, £8)) L@ds 1+T+ol] L (47.19)

The integral in (4.7.12) can be evaluated from the results of § 2.2 by setting

(ga?——ga) Xy = %—a|x|sz, (47.13)
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472 J. R. WILLIS

which is a good approximation in A7({?), so that the integrand in (4.7.12) becomes, asymp-
totically, £,[t —#, + 0i]~*. Use of the easily derived relations

§i’ = —S%xllt: gg = ‘S%leto, (4'7’14)
1 (t)\®
~zaly) o=t (7.19)

and equation (2.2.40) now gives

Tt 2,) ~ — A-1(1 + 0, £2) b(%’—jt)*ﬂ(to—t) (4.7.16)

4nd

as t—t,, displaying the expected square root singularity.
The results of this section have previously been derived in a rather different form by Burridge
& Willis (1969).

(b) Linearly varying loads (n = 1)
Suppose now T8, X,) = TyX%y + ToXy, (4.7.17)
where 7, and 7, are constant vectors. Then from § 4.5,
b(tyx,) = (byxy+byxy) (82— s3a3 —s343) % H(#2 — s3x3 — 5343), (4.7.18)

where 4, and b, are constant vectors (a term proportional to ¢ in the first bracket should strictly
be added at this point but the work to follow will show that itis not needed). It can now be shown,
using equation (4.1.19), that

4 __2m (b b7\ 2 Q\®
@) - () sl - @) (719
and, correspondingly, that
FA(z,9) = on, (bizl *’72)( 2 — 223, (4.7.20)

Therefore, from (4.5.4),
32(2n)“’5§ (77 X )2
BTt x,) = — ol ds (1ete
t ( >xa) 5152'5 =1 S t

-3
xRe{iA—l( Te “+0,na)(bi’ﬁ+b2’72)[wg ("“t“ 01)] ; (4.7.21)

Integrating (4.7.21) once with respect to time yields

32(27:)-%
S152

8, T(t,x,) = — fﬁ dsRe{iF QdQ A= Q+0i,p,)
Inl=1 PaZoft

52 52

y (”1”1 bz’“) [R— (2— Oi)z]-s}, (4.7.22)

which may be integrated again, changing the orders of integration, to give

T(t,%,) = — Wj;' dsRe :i f " dQ(Qt—7,x,) A=~ Q+0i,7,)
I7l=1 Pazalt

S152

(51771+ bz"?z) [wf— (@ 0i)2]‘3}; (4.7.23)
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this form appears immediately if 7, x,/¢t > 0, and for 3,x,[/t < 0 by exploiting the fact that the
integration with respect to £ in (4.7.29) may be performed along any path from 7,x,/ to co so
that the upper limit oo can be replaced by —oo whenever this is convenient. When x € §(¢), the
integral with respect to 2 is independent of the lower limit #,#,/¢, which may therefore be set
equal to zero. The even property of A~ as a function of 7 now shows that the term £¢ contributes
nothing and so, when x€S(¢),

32(27:)‘%
S152

T(t, x,) = fﬁm ldsRe{i f : dQn,x, 41— Q+0i,7,)

x (bl—fl+é3—;'72) [0 — (2- 0i)2]-3}, (4.7.24)
51 S

which, when set equal to — (7,%;, + 7, %,), provides equations for the vectors b;, b,.
As in example (a), the body-wave arrivals are given by equations (2.2.15), (2.2.19) or (2.2.26),

with n = 1 and . _ 8idY(w,£,) (blgl

T =
(@, &) 725, Sy 53

b g2) [(wo(£))?— 0], (4.7.25)

The singularity in 7%, x,) for x close to S(¢) may be found by the method that was employed in
the preceding example. Similar manipulations starting from (4.7.21) show that

75 ~ 202 o grrefiaaqio, (A8 BE) [ afuber] )

5152 |V“)o| 1
(4.7.26)
as ¢ t,. Comparison with (4.7.12) now gives immediately
T(t,x,) ~ 7w 2A-1(1+0i,&2) (byxy + by xz)( ) H(t,—1). (4.7.27)

(¢) The self-similar relaxed crack (n = 0)

An example will now be considered for which the extension of ‘Galin’s theorem’ embodied
in equations (4.5.17), (4.5.18) is not applicable. Consider a crack occupying the region S(¢):

5 =0, |%|< U, (4.7.28)

in a medium for which the plane x; = 0is a plane of symmetry, so that 4,3 = 4,3 = 0. The crack
expands in response to a uniform tension o§; = 7° applied at infinity, and yielding takes place in
the region Ut < |x;| < Vtin the plane of the crack, so that the stress oy, is everywhere finite. In
the zone of yielding, oy, takes the constant value Y, and the speed V with which this zone expands
is determined by the condition that o33 remains bounded near x; = + V# This simple model of
plastic yielding ahead of a crack was first proposed by Dugdale (1960) and its extension to the
dynamic situation described here was carried out by Atkinson (1967). The problem is recon-
sidered here both as a simple application of the results of § 4.5 and because the present approach
shows up immediately a simple feature of the problem that was not at all apparent in Atkinson’s
treatment.

If u; and o; are defined on the additional displacements and stresses that are induced by the
crack, the boundary conditions corresponding to (4.5.1) that define them are

oty x) = {YH(|x,| — Ut) =79} 8,5 (%3 = %0, |2,| < V1),
[u(t,9)] = 0 (|x,| > V), (4.7.29)
u(t,x) >0 (|| >o0).
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Thus, although physically the crack occupies only the region |x;| < Ut and is loaded uniformly,
the mathematical problem that is to be solved is equivalent to one for a crack over the region
|#;] < V%, which is loaded in the way specified above.

The solution of the problem follows directly from equation (4.5.13) with » = 0 and

TO(p) = — YUBS(xy — Ut) + 8(x, + Ut)} . (4.7.30)

Thus, since 4,5 = 4,3 = 0, the only non-zero component of G®(z) is G§(z) and this is given as

202m)EYUdg(—U+00) (2= Ui . P,

GP(2) = VA5 (U2 =27 + (22— 172¥

(4.7.31)

where P, is a constant. But G§?(z) must be finite at z = + V, since the stress o3 is bounded at

x; = + Vt. Hence,
P, =0. (4.7.32)

It may be noted that the dynamic effects appear in a very simple way in (4.7.31), through the
term Agq(— U+ 01), which was picked out by the delta functions in (4.7.30). Thus, the relative
displacement b4(t, x,) = tb4(1,p), which is obtained from the Plemelj formula

by(1,9) = Ga(p + 01) — Gy(p — 0i) (4.7.33)

has the same form independently of the speed U, though its amplitude is governed by the factor
Ass(— U+01). The speed V of the zone yielding is now fixed by substituting G{?(z) into (8.2.7)
and integrating with respect to time to give 7'(t, x,). Identifying T5(¢,0) with —7° then gives

70

_ YUAy (- U+0i) (V2— Uz)%Re{J‘oo-i—Oi do

o (22—-T2)s (U2—0Q2) Aaa(Q)} (4.7.34)

T

as an equation for Vin terms of 7% Numerical results relating 7% U and V have been given by
Atkinson (1970), but the ‘universal’ character of the relative displacement b4(¢,x;) has not
been noted before. Equation (4.7.31) can be integrated to give

G3(Z) — (27_:)% YA33(—- U+Ol) {(Z— U) IH(VZ_ UZ~i(V2— Uz)% (22— VZ)%)

z=U
Vet Uz—1(V2— U2 (22— V)i
z+U

— (4 D) ln( )+k1z+k2}, (4.7.35)

where £, and £, take values so that G3(z) and G3(z) tend to zero as z tends to infinity. The Plemelj
formula (4.7.33) now gives

[73(1,1)) = 2(271:)% YA33( —U+0i) {(p_ U) In (Vz_ Up+ (V2__ U2)% (Vz_pz)%)

Vip-U]|

P Up (V2= U (12— p2)}
——(p+U)ln( i )}

which has the same form as the relative displacement given by Bilby, Cottrell & Swinden (1963)
for the corresponding static, anti-plane problem.

(4.7.36)
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5. FURTHER MIXED BOUNDARY-VALUE PROBLEMS

5.1. Formulation of problems with three mixed conditions
(a) Punch’ problems
A more difficult problem than the one discussed in § 4.1 for the half-space x; > 0 is obtained
by imposing the boundary conditions

Cogiathn, (b %) =0 (%5 =0, x¢S(t)),} (5.1.1)

ug(t, %) = wi(t, %)  (xeS8(1)),

where S(¢) is the expanding ellipse (4.1.2) and w(t,x,) are homogeneous functions of degree
n+ 1. For the sake of giving the problem a concise name, it is termed here a ‘punch’ problem
because it contains the dynamical generalization of the problem of static indentation by a
perfectly rough punch for which the transverse displacement under the punch is prescribed, in
fact, to be zero.

The problem would be solved by the results of § 2 if the traction vector 77(¢,x,) were known
over S(1), and a possible approach is to set up an integral equation for 7(¢, x,). Such an equation
may be obtained from the representation (2.1.35), coupled with the argument given near the
beginning of § 4.1. Thus, in analogy with equation (4.1.12), we have

3 +2
a(tn+2)u(t,x> — _@§ dsRe{(_m)n
t Igl=1 ¢

xB(—7%&+oi,%)p<n+2>(7lé;‘-é—0i,n) (xeS(t), (5.1.2)

in which the sectionally holomorphic function F("*+?(z,#) is defined by equation (2.1.36) and
the matrix B is hermitian. The static limit of the problem is obtained by letting the density p of
the half-space tend to zero, and in this limit the matrix B reduces to a function of  only. The
static equation corresponding to (5.1.2) with # = — 2 was derived directly by Willis (1971 4) and
solutions were constructed, using properties of the Radon transform, for the case in which u(x)
was a polynomial, the half-space isotropic and the surface § a circle. A corresponding approach
can be made to (5.1.2) directly if w,(¢, x,) are (homogeneous) polynomials of degree n+ 1, for
then the left side of (5.1.2) is zero and a solution would be obtained if a Radon transform 7'(p, )
could be constructed, with a sufficient number of arbitrary constants, for which

Re{(=p)™+* B(—p+0i,7,) F*2(p—0i,7)} = 0 (|p] < wo(n)), (5.1.3)

where wy(%) is defined by equation (4.4.4). This matrix Hilbert problem does not have a closed
solution except in the static limit, but the construction of systematic approximations, and their
use in solving the ‘punch’ problem, will be discussed in following sections.

The two-dimensional ‘punch’ problem is obtained by taking §(¢) to be the expanding strip
(4.2.1) and w,(¢, x,) to depend only upon (t, v, *,); similar reasoning to that used in § 4.2 leads in
this case, in analogy with equation (4.2.4), to the equation

- n+2
A1, x) = EQ?_* Im { _ (”A—t’“) B (— % o, Va) G+ (%A —0i, V)} (xeS(1)),
(5.1.4)

33 Vol. 274. A.
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where G®1V(z, v) is defined by equation (2.8.8). Thus, upon setting
o Iu(tx) = Tur(p)  (xeS(r), (5.1.5)

where p = v, x,/t, equation (5.1.4) implies the Hilbert problem
2(2r)EIm {(—p)™+2 B(—p+0i,v,) G*H0(p— 00, v)} = w+3(p)  (|p| < V), (5.1.6)

whaose solution is closely related to that of (5.1.3).

(6) Interfacial cracks

The problem strictly dual to the ‘punch’ problem described above would be that for a half-
space x3 > 0, with tractions prescribed over S(¢) and zero displacement prescribed over its
complement. However, a generalization of this problem, which is of the same type and has more
obvious practical value, concerns a crack occupying the part S(¢) of the interface x; = 0 between
two dissimilar half-spaces, x; > 0 and x; < 0, which are perfectly bonded together over the
remainder of their interface. This generalization will be discussed below, the strict dual of the
‘punch’ problem being obtainable by taking the half-space x, < 0 to be rigid.

The formulation of the interfacial crack problem follows precisely that given in § 4.5 for a crack
in a homogeneous medium, at least as far as equation (4.5.4). The matrix which appecars in
(4.5.4) is now hermitian but not symmetric, so that the solution of (4.5.4) in the present context
will differ in form from the one given in § 4.5, however. In the static limit, the matrix 4~ reduces
to a function of 9 only and this limiting case has been studied directly by Willis (1972). A similar
approach to that suggested for the ‘punch’ problem may be followed, if the traction vector
T(t, x,) is prescribed to be a (homogeneous) polynomial of degree n over S(t), for then the left
side of (4.5.4) is zero and the problem would be solved if a Radon transform could be constructed,
with an appropriate number of arbitrary constants, for which

Re{(=p)" 1 A7 (=p+0L,7,) F*9(p—0i,9)} = 0 (|p] < wg(1)). (5.1.7)

This Hilbert problem has the same structure as (5.1.3); its solution, and the solution of the crack
problem, will be discussed in following sections.

The two-dimensional interfacial crack problem may be formulated similarly; we take S(¢) to

be the expanding strip (4.4.10) and T(t,%,) = *T(p), (2.3.2)
where p = v, x,/t and T(p) is given for |p| < V. In this case, upon setting
oD T8, x,) = TD(p)[t (4.5.10)

equation (3.2.7) implies
2(2m)~F( = 1)* Im (p+14-1( —p -+ 0, ,) G+(p— 03, 1)} = T(p) (|p| < V), (5.1.8)
where G™*9(z,v) is defined by equation (3.2.4). This Hilbert problem has the same form as

(5.1.6) and its solution is closely related to that of (5.1.7). The static limit of (5.1.8), for which
A-1 reduces to a constant, has been obtained and studied directly by Willis (1971 5).

5.2. Solution of the Hilbert problem for isotropic half-spaces

Attention will now be directed towards solving the Hilbert problem (5.1.3) which may also
be expressed in the form

BY(~p+0i,7,) FSH9(p,m) — B(—p+ 0L, 9,) F&4D(p,m) = 0 (|p] < wy(n),  (5.2.1)
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in view of the hermitian property of the matrix B and the fact that the Radon transform 7'(p, 7,,)
from which F{(z, ) is derived must be real. From its definition (2.1.36) it is clear that a solution
of (5.2.1) must be sought for which

Foid(z, ) = 0(z7%)  (|2] >0) (5.2.2)
and Fosd(z,9) = 0(zF o)™ (2 + 0y(n)). (5.2.3)

The problem will be approached by first attempting to construct a fundamental matrix ¢(z,7)
(Vekua, 1966), for which

BT(—p+0i,7,) ¢, 1) = B(=p+08,75) $_(p,7) = 0 (|p] < (7). (5.2.4)
and d(z,m) = O(1) (|z] >0 or z—twy(y)). (5.2.5)
The matrix ¢(z, ) is also required to be non-singular. In fact, by equating the determinants of

the two terms in (5.2.4) it follows that det¢(z,7) is entire and therefore must be constant if
(5.2.5) is satisfied. If ¢(z,%) were known, an appropriate form for F®+2(z,3) would be

Foid(z,) = $(2,7) Pusa(2,7m) [22 = (05(n))*] % (5.2.6)

where P, ,(z,7) is a column vector where components are polynomials of degree n+1 in z.
The two-dimensional problem is also soluble in terms of ¢(z,v), with wy(v) = V, for, upon

setting
(=2)" 2 G(z,v) = §(z,v) H(z,v) (22— V)7, (5.2.7)

equation (5.1.6) implies

BT(—p+0i,,) 6. (p,v) [H,(p,v) — H_(p, )]
= — (b (phueip) (| < V). (5.2.8)

The most general admissible solution of (5.2.8) is

() = (2m) 4[| 2L gorip,0) By wso() dp
+ Py i3(2) (22— V277, (5.2.9)

where P,, 5 is a polynomial of degree 2z + 3 in z, for then G™+1(z, v) is O(z=*~2) as |z| > o0 and is
O(zF V)% as z— + V. The coefficients in P, 5(z) are not all arbitrary, as they must be chosen
so that the right side of (5.2.9) is O(z"*?) as z— 0. In particular, if w(¢, v, x,) is a polynomial of
degree n+ 1, so that w®+?(p) = 0, then Py, 4(z) = (—2)**2 P, ,(z) and

GOz, v) = §(2,7) Py a(2) (22— V2) =L, (5.2.10)

The arbitrary coefficients in P, ;(z) suffice to generate any homogeneous polynomial w(¢,v,x,)
of degree n+ 1 and the solution of the two-dimensional problem may be completed as indicated
in § 4.2 for the frictionless ‘punch’ problem.

The complete solution of the three-dimensional problem is more complicated, owing to the
need to select the polynomial vector P, ,(z,7) so that F(z,) yields a function 7'(p,,) which is
indeed a Radon transform. This problem has not yet been resolved in generality even in the static
limit (see Willis 1971 4); consequently, in the sequel we specialize to an isotropic half-space and
to the circular region S(¢):

x3 =0, a%+x3 < V22, (5.2.11)
33-1
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478 J. R. WILLIS

for which a systematic construction can be developed. In the remainder of this section, therefore,
the matrix B(—p + 0i, 5,) will be taken to have the special form (2.6.13) and systematic approxi-
mations to ¢(z, %) will be generated for this case.

When the matrix B(—p + 0i,7,) has the form (2.6.13), the Hilbert problem uncouples partly,
and a matrix ¢(z,#) can be sought for which

-1y i g(z) —in g(—2)
Plz,n) =| 7 imeg(z) —in.g(—2)], (5.2.12)
0 h(z2) h(—z)

where the sectionally holomorphic functions g(z), A(z) are to be determined. The form of the
third column of ¢(z, ) is possible because the matrix B(—p + 0i,7,) is an even function of p. To
construct g(z), h(z), set

¥(z) = [l}f((j)) _,lif:)z)]- (5.2.13)
Then y(z) satisfies the equation
By~ By =0, |p| <7, (5.2.14)
B(—p+0i) —id(—p+0i) |
where By(p) = [id( —p+0i) e(—p+0i) ] . (5.2.15)

~ Guided by the construction employed by Willis (1971 a) in the static limit, an approximate
¥(z) will be found by first noting that the eigenvalue problem

(BE=AB)U=0 (5.2.16)
has solutions U, = [(b/ie)’z'] , A= %%_i{_j’ (5.2.17)
—1i (be)t—d

and U2 = [(b/e)%] N Az = (—b-e)%—-—;z (5.2.18)
Now if (b/e)* were a polynomial in p, a particular solution of (5.2.14) would be

¥ (2) = [Uf2), G A(=2)], (5.2.19)

so long as NOAB) ~F0) =0 (Il < V), (5.2.20)

that is flz) = exp{——gi—t—ifi/ lﬂ%_ﬁzl_%} (5.2.21)

If (b/e)? is not a polynomial, an approximate solution of (5.2.14) is obtained by approximating
(b/e) by a polynomial in p on the interval [ — V, V]. If, therefore

(ble)t =~ Ki[l (1—p2/c) (5.2.22)

on [ -V, V], an approximate solution of (5.2.14) is

V@ =0 1oy ] 9202 (5.2.23)
where Vo(z) = [;l‘g;’(%) _}lioézoi—;)Z)] , (5.2.24)
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and &(2) =f(2), hy(z) = Kf(2). (5.2.25)
The approximation (5.2.22) involves only p? as (bfe)? is an even function of p.

The approximate solution (5.2.23) does not yield a fundamental matrix because it is O(z%?)
as z tends to infinity and also its determinant vanishes at z = +¢;, ¢ = 1,2, ...,n. However, a

fundamental matrix can be constructed from it as follows. First, define
ICE NN PNE (5.2.26)
0 0 1—2z%c3] 7OV -

The determinant of the matrix ¥ (z) contains 1—z2/c} as a factor and the object is to eliminate
this by operations on the columns of ¥§(2), corresponding to post-multiplication by another
matrix. This is effected by setting

% ol —¢1) /(1 —z[ey) ole)[(L+2zfe) T[1—kiz  Kyz
ACRS LISl S o ) | s LSy

Then det ¥, (2) is constant and

o[ 5]
where @) = (1-k2) gk ) +k1zg;'<<—z>,} (5.220
hy(2) = (1—ky2) b (2) = ky 2 (- 2), o
v _ 80(2) 8o(—c1) — 8o (—2) go(er)

and &i(e) = 1—zfe, ’ (5.2.30)

I (2) = (1+2ey) [ho(2) 8o( —¢1) +ho( —2) go(1)]-
Further, if ho(2) ~ hy(o0) +8/z  (|z| > 0), (5.2.31)
each component of ¥, (z) is bounded as z tends to infinity if £, is chosen so that

_ [8o(er) +go(—61)] 229(20)

B = STl + 8ol — ) Vlo0) — 8Teo(e2) — ol — T/} (5232

We may now define Yi(z) = [(1) | _32 /02] Vr1(2) (5.2.83)

and repeat the reduction. After n steps, a matrix ¥, (z) is obtained, which is equal to 1¢(z) post-
multiplied by a matrix whose components are meromorphic, is O(1) at infinity and has constant
determinant. The matrix ¥, (z) thus satisfies the Hilbert problem exactly when (b/e)} is the
polynomial on the right side of (5.2.22) and may therefore be taken as an approximate funda-
mental matrix of (5.2.16), from which an approximate ¢(z,7) follows by substitution into
(5.2.12).
5.3. Solution of two-dimensional  punch’® and crack problems

The basic solution of the two-dimensional ‘punch’ problem has already been outlined and is

embodied in equation (5.2.9). Equations (5.2.7) and (5.2.9) give

(=22 6e(z,) = gz [(em) it - v [T B  gaip ) Br(—p o oin)

X WD (p) dp + Py 15(2,v) (22—~ V?) ~n_%} . (5.3.1)
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The solution is completed by first restricting the coefficients in £y, 5 so that G®+D(z, v) is not
singular at z = 0 and then integrating z + 1 times with respect to z remembering that G(z, v) -0
as z—>00. The traction vector 7(t,x,) = t»T(p) then follows by use of the Plemelj formula

I(p) = Gi(p>v) = G_(p,7). (5.3.2)

The remaining 7+ 1 arbitrary constants are fixed by reverting to the representation (2.3.10)
with x3 = 0, integrating z + 1 times with respect to ¢ with G®+9(z, v) given by (5.3.1) and then
adjusting the constants so that the desired «(¢, x,) is obtained over S(¢). Details will not be pursued
here, but an example will be given later.

The solution of the two-dimensional interfacial crack problem is similar. Let x(z, ») denote
a fundamental matrix of the Hilbert problem (5.1.7) and set

2 HGOAD(z, v) = y(z,v) H(z,v) (2= V)L (5.3.3)
Substitution of (5.3.3) into (5.1.8) then gives

TeD(p) = (2m) 5 (= 1) (V2= p2) "3 A7 (= p+ 01, v,) x4 (8, 7)
X [H,(p,v)—H_(p,)] (Ip] < V), (5.3.4)

which must be solved subject to the conditions

H(z,v) = 0(z™)  (|2] > 0), }

= 0(z¢ V)——’n——%+8 (Z_>i V), (5.3.5)

where 0 < & < 1, since the relative displacement of the crack faces is zero at the crack edges,
p = = V. Hence,

v (V2_.p2)%

H(z,v) = (2m)¥i(— 1)”’“1f 7=z X5 (6, v) A¥(—p+ 0, v,) T*0(p) dp
-V -

+Pia(2) (22— V)1, (5.3.6)

where P, ,,(z) is a polynomial of degree 2z+ 1 in z. The general solution for G®*+2(z, v) now
follows from (5.3.6) and (5.3.3), and it is clear that the coeflicients in P, ,; must be restricted so
that H(z,v) = 0(z"*!) as z— 0. In particular, if 7(¢«,) is a (homogeneous) polynomial of
degree n in (4,v,%,), then T®+D(p) = 0 and

G®9(z, 1) = x(z,v) B,(2) (22— V2)-n-4, (5.3.7)

where P,(z) is a polynomial vector of degree n, whose coefficients must be adjusted so that the
correct T(t, x,) is obtained.

5.4. Solution of three-dimensional ‘ punch’ and crack problems

As remarked in §5.2, completion of the solution of three-dimensional ‘punch’ and crack
problems is more difficult than for the corresponding two-dimensional problems, owing to the
need to ensure that functions T’(ﬁ, 7,) or b(p,n,) are constructed which are indeed Radon
transforms. It has not so far proved possible to resolve this problem even in the static case (Willis
19714, 1972) without exploiting in some detail the structure of the matrices B(—p + 0i,7,),
A-1(—p+0i,17,), and solutions have been obtained only for problems involving isotropic (or
transversely isotropic) half-spaces.
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Dealing first with the ‘punch’ problem, for an isotropic half-space the fundamental matrix
takes the form (5.2.12). If the case is now considered for which u(Z,x,) is a homogeneous poly-
nomial of degree z + 1 over S(¢), the solution for F®+3(z, ) has the form (5.2.6) and the problem
is to select the polynomial vector P, (2, %) so that the Plemelj formula

T(P: 770;) = F_,_([), 77) - F—(p’ 77) (5'4'1)

yields a real vector 7°(p, 3,) which satisfies the necessary and sufficient conditions (A 2), (A 3) so
that it is a Radon transform. To this end, it is convenient to define a different fundamental
matrix by replacing the second and third columns of ¢(z, %) by their sum and difference respec-
tively, to yield a new matrix

(z,m) = [Up(n), Vi(z, 1), Va(2, 1)), (5.4.2)
where
—1y ine(z) —g(—2)] im[g(2) +g(-2)]
U(n) = | m |, Vi(zm) = |ine(2) —g(=2)1|, Velzm) = |insg(2) +&(—=2)]|. (5.4.3)
0 h(z) +h(~2) 0

Now ¢(z,%) is also a fundamental matrix and so any column of ¢(z, ) must be expressible as
a linear combination of those of ¢(z,%). Consideration of the even and odd properties of each
component now shows that V(z, 7) must be proportional to ¥;(z, %) and ¥,(z, 9) must be propor-
tional to V,(z, 7). Hence, by scaling V;(z, 1), V3(z, 1), a fundamental matrix ¢(z, %) can be selected
so that it has the form (5.4.2), and also ¢(z,7) = ¢(z, 7).

With ¢(z,7) given by (5.4.2) and F®+3(z,7) as in (5.2.6) the method of selection of the poly-
nomial vector P, ,,(z,7) parallels that which was used by Willis (19714) in the static case, but is
a little less explicit and also rather more compact. Consider the expression

Feid(z, ) = (1, +in9)™ (U (1) Rpa(2) +V1(2,0) Spya(2) +Va(z, 1) To1a(2)} (22— V)72, (5.4.4)

where R, ,,, S,4; and T, ,, are scalar polynomials of degree n+ 1. The definition (2.1.36) of
F®+2(z, ) and the even property (A 2) of the Radon transform implies that F®+2(z, #) is either
an even or an odd function of (z, ) and this immediately places restrictions on the polynomials,
Next, the condition (A 3) may be expressed, upon the use of the Plemelj formula (5.4.1), in the
form

§ 2+F(z 1) dz = Ba), (5.4.5)

where P,(7) stands for a polynomial of degreec < £ in 7, and the integral is taken around any
contour enclosing the segment [ — ¥, V] of the real axis. This may be reduced, by integration
by parts n + 2 times, to the form

4; ZnH2tkFid) (2 m) dz = Py(y), (5.4.6)

which places restrictions directly upon the polynomials R, ,,, S, and 7},,,. The application of
(5.4.6) is simplified by observing that, if m > 1, the term in brackets in (5.4.4) may be combined
with a factor (7, +i7,) to give

(=2 Uy Rysr + M Spia + Ve Do) +i0 Gy Ry + 12 ViSnia + 12 Va Try),  (5.4.7)
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which may be compared with corresponding terms in equation (6.10) of Willis (19714). These
groups of terms are convenient in that the first bracket may be re-written

Ryi1 =13 (Ryi1 —18%8041 —18°T,11)
— M 772(Rn+1 - igOSn+1 - igeT’n+1) ) (5.4. 8)
P1(A°S 1 + 10T 4q)

where g° stands for the odd function g(z) —g(—z), g° stands for the even function g(z) + g(—2z),
and so on; the second bracket may be re-written similarly. ‘

When m = 0, (5.4.6) is satisfied for all polynomials R, ,, S, .4, 7,,,; which conform with the
even property (A 2). For m > 1, however, (5.4.6) implies

§2n+2+kR,n+1(Z) (Zz_d—"—;-z)n——_l_z =0 (k = O, 1, ...,m'—2 (m > 2)), (5.4.9)

3Ezn+2+k{Rn+1(z) —ig°(2) 8,11(2) _ige(z)}(sz;z)m =0 (k=0,1,...,m), (5.4.10)

4;Zn+z+k{,ze(z) S, 1 (2) +10(2) Tn+1(z)}(—zzt('1§§)‘m =0 (k=0,1,...,m—1). (5.4.11)

Now deforming the contour of integration in (5.4.9) to infinity shows that R, ,(z) must actually
have degree at most n—m + 2. A similar operation on (5.4.11) coupled with the observation that
he(z) = O(1) as z— oo, while /°(z) — 0 as z—> co since it is an odd function, shows that §,, ,,(z) has
degree at most z—m + 1 and 7,,,,(2) has degree at most n —m + 2. Therefore, only values of m in
the range 0 < m < n+ 2 may be admitted in (5.4.4). With the above restrictions, together with
the appropriate limitations to odd or even functions, equation (5.4.10) is satisfied automatically
for all k except either £ = m — 1 or k = m. Some careful accounting, allowing for both the real and
imaginary parts of the Radon transforms generated for m > 1, now shows that (5.4.4) yields a
Radon transform with $(n+2) (n+3) constants unspecified, which suffice exactly to match
a homogeneous vector polynomial of degree z + 1 in (¢, x,). The solution to the ‘punch’ problem
is thus obtained in principle, the only task remaining being the evaluation of a number of
definite integrals.

The solution of the crack problem is obtained similarly. The Hilbert problem (5.1.7) with
wo(n) = V, may be expressed in the form

AT (= p+08,1,) FLF0(p,m) = A7 (= p+ 08, 9,) FEH9(p,m) =0 ([p| < V), (5.4.12)

since F®+3(z, 5) is defined by equation (3.1.10) and &(p,7,) is real. As §(p,7,) tends to zero as
p tends to + V, the Hilbert problem must be solved subject to the conditions

Fotd(zog) = 0(zF V)™ (z >+ V),}
= 0(z%) (z—>00).
Therefore, if ¥(z,7) is a fundamental matrix of (5.4.12) the most general admissible expression
for BBz 1) 38 Foi9(z,9) = x(z,7) Pul ) (22~ V), (5.4.13)
where P,(z,7) is a polynomial of degree n in z, which must be restricted so that the Plemelj

formula B(p,1) = Fp,1) = F(p,1) (5.4.14)

yields a real Radon transform &(p,7,,).
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For isotropic half-spaces the matrix A=*(—p+ 0i,7,) has exactly the same form as the matrix
B(—p+0i,7,) given by equation (2.6.13) and y(z,%) can be taken to have the same structure
as (5.4.4) but with the vectors V;(z,7), V3(z,7) being obtained from 4~1(—p+ 0i,7,) instead of
B(—p+0i,7,). With x(z,9) defined in this way, the polynomial vector F,(z,7) may be chosen
as in the ‘punch’ problem, so that

Fos(z, ) = (1, +ing) {U5(0) Ra(2) +T4(27) Su(2) +TVa(2,7) Tp(2)} (2= V3=, (5.4.15)

In analogy with the ‘punch’ problem, the restrictions that are placed on the polynomials R, §,,,
T, are that F(z,7) must be an odd function of (z,#) and that form > 1,

§Z’”’+3+kRn(Z) ﬁz)"_ﬁ =0 (k=0,1,....m—2 (m>2)), (5.4.16)
§Zn+3+k (R, (2) —ig°(2) S, (2) —ig°(2) T,,(2)} (—22%4%)—7;;2 =0 (k=0,1,...,m), (5.4.17)
§Z'n+3+k{}le(z) S, (2) + ko (2) Tn(z)}(z2 —dzz)n” =0 (k=0,1,...,m—1). (5.4.18)

These conditions restrict R, (z) and 7,,(z) to have degrees at most #—m+ 1, and §,(2) to have
degree at most n—m. Condition (5.4.17) also imposes one further condition, either when
k =m—1 or when k =m, and (5.4.15) then contains just sufficient undetermined constants
(with 0 < m < n+ 1) to match an arbitrary homogenecus vector polynomial 7(¢,x,) of degree .

5.5. Examples
(@) The two-dimensional  punch’ problem (n = —1)
A simple example of a ‘punch’ problem is obtained by taking .S(#) to be the strip
x5 =0, |x] < V4 (5.5.1)
so that v; = 1, v, = 0, and applying the mixed boundary conditions (5.1.1) with
wy(t, %,) = wi,
wy(t, %,) = 0, (5.5.2)
ws (4, %,) = w,
which define a problem of plane strain in the (%, x3) plane. For this example, n = —1 and the
solution (5. 2. 10) reduces to G(2) = id(2) P22 — V)4, (5.5.3)
where P, is a constant vector. Equation (5.3.2) gives

T(p) = [$(p+0i) +p(p— )] F(V2—p2)F  (|p| < V), (5.5.4)
and this real if P, is real, if ¢(z) is chosen, as in § 5.4, so that ¢(z) = ¢(z). The constant vector F, is
now fixed by substituting (5.5.3) into (2.3.10) to given an expression for «(¢,x) on the surface
x3 = 0 and equating this to w® over S(f). Of course, u(¢, x) would be exactly constant over §(¢)
if ¢(z) were known exactly and substituting (5.5.3) with an approximate ¢(z) into (2.3.10) will
yield a displacement u(t, ) whose variation over S(f) will provide a check on the adequacy of
the approximation to ¢(z).

In evaluating the integral in (2.3.10), it is convenient to split it into two parts, so that

u(t, &) | gm0 = 2(2m) 7% ImU‘Oi

— &, [t+01

dQB(2,v) G(— .Q)} +u(t,0), (5.5.5)

34 Vol. 274. A.
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484 J. R. WILLIS

and to choose the contour of integration for u(z, 0) to be the positive imaginary axis. This gives

u(t, 0) = 2(27-:)—‘%Re{ f " dp BGp) G(—ip)}. (5.5.6)

Now since vy = 1, v, = 0, uy(f,x) = 0if Gzl(z) = 0, and in this case the relevant part of B(£,v) is
just B;(2), which is defined by equation (5.2.15) as B(£2,v) with the 2-components deleted.
Correspondingly, the relevant part of ¢(z) is

[ e |

¢‘(Z) = [/z"(z) he(z) ) (5.5.7)
which is obtained from the sum and difference of the columns of (5.2.13) and for which it may
be assumed that ¥(z) = ¢ (z). Equation (5.5.6) now gives

- _1 © dp i(bge—dho) i(bg° — di°)
u(z‘, 0) = 2(275) ZRC{J‘O (Vz_{_pz)%[(gﬁo_dge) (Bﬁe—dgo) ]PO}: (5.5.8)

where b, d and ¢ are evaluated for Q = ip while g°, g®, 4%, h® are evaluated for z = —ip. Now
b, d and e are given by equations (2.6.14) and are real when 2 = ip. Also it is easily deduced,
using the property ¥r(z) = (z), that g°(—ip) and A°( —ip) are real, while g°( —ip) and A°( —ip)
are imaginary. Hence, (5.5.8) reduces to ‘ ‘
© dp i(bg®—dh°) P,
= _% ey 5
u(t, 0) = 2(2r) fo (Vz_pz)%[(e/lc_dgo)})s s (6.5.9)

where P, and P;are the 1- and 3-components of the vector £,

In order to compute «(Z, x), an approximate ¥(z) must be constructed; for illustration, com-
putations have been performed for the simplest approximation to the function (b/¢)* which has
the correct values when 2 = 0 and when £ = V. Thus

(ble)t = (%i-g)i ~ 1-%, (5.5.10)
where ¢ = V{l - (i‘z%ﬁ:‘)i}_%- (5.5.11)

This approximation requires just the one cycle of the reduction given explicitly in §5.2. Since
¢, is real, f(¢;) and f(c,) are complex conjugates, £, is real and the ¥(z) constructed satisfies
automatically the condition ¥r(z) = ¥(z). A further approximation was also made, to reduce the

COMPULng, by I (o)t a [ (4)] = k() = ko +KipY (5.5.12)
with ko = (20) M (2 + 49 (= )], sy = [k(V) = o]V (5.5.13)
This gave the closed expression |
; -V
f(z) = expi {(KO +x:2%) In (§—+—V) + 2k, Vz} (5.5.14)

in place of the integral (5.2.21). The variations in u(Z, ) along S(¢) are given in figures 2 and 3
when the resultant shear force F; is normalized to x, and in figures 4 and 5 when the resultant
normal force Fy is normalized to x. The normalization was éffected by noting that the resultant
force F'is expressible as

o J fV T(p)dp = - 350 G(2) dz, (5.5.15)
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Ficure 2. Plots of #,(¢, x;) and u,(¢, x;) for Ficure 3. Plots of u,(¢, ¥;) and u,(¢, %;) for

the ‘flat punch’ problem, with F, = y, the ‘flat punch’ problem, with F; = p,

Fy; = 0 and V[ = 0.8, using the approxi- Fy; = 0 and V[f = 0.9, using the approxi-

mation (5.5.10). mation (5.5.10).
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Ficure 4. Plots of u,(t, x;) and u,(¢, x,) for Ficure 5. Plots of u,(t, x;) and ug(¢, »,) for

the ‘flat punch’ problem, with F; = 0, the ‘flat punch’ problem, with F, = 0,

F, =p and V| = 0.8, using the approxi- F; = pand V[# = 0.9, using the approxi-

mation (5.5.10). mation (5.5.10).
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486 J. R. WILLIS

where C is any contour cnclosing the segment [ — V, V] of the rcal axis, by usc of the Plemelj
formula (8.3.2). Now by deforming C to infinity, the two-dimensional reduction of (5.5.3),
obtained by rcplacing ¢(z) by ¥(z), shows that

G(2) ~ iyr(c0) Pofz,
so that F = 2myjr(0) . (5.5.16)

It may be noted that ¢(o0) is a diagonal matrix since the functions g°(z), 4°(z) are both odd and
bounded, so that P, = 0 implies /; = 0 and P; = 0 implies F3 = 0.

The approximation (5.5.10) is better for small values of V// than for values approaching unity
and figures 2 to 5 bear this out. It is intcresting that the simple approximation (5.5.10) remains
adequate for valucs of Vg as high as 0.8, as shown in figures 2 and 4, and hardly surprising that
it is less good for V/# = 0.9, for which figures 3 and 5 indicate the need for further terms.

(b) The circular crack problem (n = 0)

For the circular crack problem, the matrix 4(£2,7,) is given as
A('Q> ”a) = B+('Qa ”a) _B_('Q> 770:)’ (5'5'17)

where B+(£,7,) is as in equation (2.6.13) with the functions b, ¢, d and e being calculated from
the density p* and clastic moduli A+, ut of the half-space x3 > 0, while B=(£,7,), because it
contains the functions £ %, &7 rather than £5%, &, 7, is given by a similar expression but with the
signs of the radicals in (2.6.14) reversed. The complete matrix 4(£2, 7,) retains the general form
(2.6.18) and it will be convenient to define it as the right side of (2.6.13), but with the functions
b, ¢, d and ¢ now being calculated in the way indicated above. It follows that

e—c'ny  c'nyyy idy

1 ’ ’ .
AN Rme) = p—mp | M. e—ci idny|, (6.5.18)
—idy, —idp, b
where ¢ = (ce+d?)[(b+c), (5.5.19)

and hence by inspection that the fundamental matrix y(z,7) can be constructed cxactly as in
§5.2, except that A,(p) is replaced by 1/A;(p) and (b/e)? is replaced by (efb):. Making these
replacements, and approximating (e/b)* by

(e/B)} =~ Ki]f[l (1—p2fc2), (5.5.20)

an approximate fundamental matrix y(z, %) is generated, which has exactly the form (5.4.2) and
whose columns can be scaled so that ¥(z,7) = x(z,7).
For the case n = 0, equation (5.4.15) yiclds cssentially two terms. First, when m = 0,

17,£°(2)
FO(z, 1) = i8, |i1,6°(2)| (22— V), (5.5.21)
he(z)

since F®(z,7,) must be an even function of (z,7). Sccondly, when m = 1,

F®(z,7,) = (m+in) (= U Ry +1V(2,7) To) (22— V)%,

—
.Q"l
<

22)
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which gives two independent possibilities, of which one is
Ry—13(Ry—1g%(2) Tp)
Fo(z,n,) =1 | ~muma(Bo—ig°(2) Ty) | (22— 7). (5.5.28)
0 (2) Ty

This is obtained by taking }(F® —F®); a similar term is obtained from %(F® 4+ F®), but this
will not be displayed. Now (5.5.23) is derived from a Radon transform &(p,9,) only if (5.4.17) is
satisfied for £ = 0, 1. For k£ = 1, it is satisfied identically, while the equation for £ = 0 implies

fﬁz"(R(,—ige(z) T)) (22— V?)-2dz = 0. (5.5.24)
Deforming the contour of integration to a large circle now shows that

R, = ig®(c0) T). (5.5.25)

That R, and T, may both be real follows because g°(z) = — g°(z), by construction.
The traction vector 77, x,) is obtained by integration of (3.1.13) or, equivalently, (4.5.4); the
latter gives

T(t,x,) = (2m)% 3@ ds Re{ f A0 47— Q+0i,9,) FO(Q— 0, %)}. (5.5.26)
l?]] =1 Nouaft
This integral may be split into two parts to give

0
T(t,x,) = T(t,0) + (2n)—%3§ dsRe : f dQ A1 (= Q + 0, 7,) FO(Q — 0i, m)}, (5.5.27)
[gl=1 Noaft

where T(t,0) = — (2r) Im{ [ : dpffl s ip, ) FO(—ip, m)}, (5.5.28)
) 7l=1

having chosen the contour of integration to be the negative imaginary axis in (5.5.28).
Considering first the form (5.5.21) for F®(z,7,), equation (5.5.28) shows, by performing the
elementary integration with respect to 7, that

I,(2,0) = T5(1,0) = 0, (5.5.29)
while Ty(t,0) = — (2m)-3.8 f df’[bg % d;f’ = i’;g)l”)], (5.5.30)

in which b, ¢ and d are evaluated for 2 = ip. The ‘imaginary part’ sign could be dropped, as in
the preceding example, because g°(ip) and k°(ip) are real. The form (5.5.28) thus corresponds to
tensile loading.

By taking F®)(z,7,) as in equation (5.5.23), it is obtained similarly that

T,(2,0) = T4(t,0) = 0,

o To [ idple(e"(0) +°(ip)) — die(ip)]
T3(t,0) = — (2m)-d g [ " HLLALI) L) Z PO,

(5.5.31)

showing that this corresponds to shear loading in the x,-direction. The other term obtainable
from (5.5.22) is exactly similar and corresponds to shear loading in the x,-direction.

Various aspects of the solution could now be examined, but here attention will be restricted to
the clastic arrivals as these are of interest in seismology. They are obtainable from (3.1.15) and

34-3
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488 J. R. WILLIS

(2.2.15), and the appropriate expression for F®(z, 3,). As an illustration, the P-wave arrival from
a crack expanding under shear loading will be discussed in detail. This is probably the simplest
arrival and yet it can still display some rather complex behaviour.
First, using (3.1.15) and the homogeneity property (A 2) of the Radon transform, we obtained
that
T(w,£,) = (2m) 21§~ A7 (w0, £,) FO(~ /€], 7,). (5.5.32)

—iwy(%l _tm, (5.5.33)

as t->|x|[e, in which £ = —x,/(a|x|), BT is (2r)~% times the term U~** that appears in
equation (2.6.5) and « = «,, the speed of P-waves in the half-space x; > 0. Now for shear

Equation (2.2.15) now gives, for x; > 0,

Amxg Im

afx? :B"‘“’ &) T(1, £9) [m t_l%l

Ru(t,x) ~

loading, F®(z,9,) is given by equation (5.5.23) and it follows after some manipulation that

. To&i[2|€| &5/ (og° + dh°) +i(2]£* — w?]5%) (dg° +b/2°)]
B*(w,§,) (w &) = (2m) %ILLD lgl be——dz) w2 — V2lgl & 1>
&5
in which &, d and ¢ are functions of 2 = w/|£| and g® and 4° are functions of z = —w/|§|. The
P-wave radiation pattern produced by a shear crack now follows by substitution of (5.5.34) into

(5.5.34)

(5.5.33), with w = 1 and &, = —x,/(a|x|). Since now & * = —x,/(a|x|), the P-wave arrival is
radial, as it should be, but it can be quite complicated. It is not, for example, very simply related
to the ‘double couple’ P-wave arrival, even if the double couple is taken at the interface, for this
would be obtained by taking b&(¢,x,) proportional to &(x;) 0(x,), so that F®(z #,) would be
proportional to z~* and would not involve g¢, k°. This contrasts with the arrival produced by
a crack in a homogeneous medium, in which the arrival is just that of a double couple, modified
by the factor (w?— V2|£|2)~2 (Burridge & Willis 1969). It mayalso be noted that, when z= — 1/|§|,
g°(2) is imaginary while %°(z) is real. Also, D(1, |£|) is real, and so a step function arrival is
obtained if 4 and ¢ are imaginary and d is real. It is clear from equations (2.6.14) that this will
occur if @, || (%3 x)) "% is greater than the speed, a_ say, of P-waves in the half-space x; < 0 and,
in particular, for all x (with xz > 0) if « is the larger of the two P-wave speeds. If a is the smaller
of the two P-wave speeds, however, the arrival will have a logarithmic component in the region

x %) > o | x|l (5.5.35)

This singularity is not associated with a sharp wave front with no disturbance ahead of it, but is
physically acceptable because a disturbance could have reached x before the arrival time
t = |x|/a, by travelling partly in the lower half-space. A ‘conical wave’ may thus be present in
the P-wave arrival, as well as in the S-wave. The analysis of § 2.2 was directed towards finding
just the direct body-wave arrivals and gives no information on the actual first motion in the
region (5.5.35).

The P-wave arrival given by (5.5.33) is homogeneous of degree — 1 in x and a simple way of
representing it graphically is to plot a polar diagram, with the arrival as radial variable, while
x ranges over the unit sphere; this gives the shape of the set of points x on which the arrival is
constant. Figure 6 displays such a polar diagram, when x is in the plane x, = 0. The properties
of the halfspace were taken asa, = 6.5, f, = 3.74,a_ = 7.76, f_ = 4.36 (kms™) and p, = 2.85,
p_ = 3.3 (gcm™?), characteristic of the ‘Moho’ interface between the basaltic layer and the
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upper mantle of the earth (Jeffreys 1970),and the crack speed V'was taken as I = 0.84,,. Approxi-
mations like those used in Example (5.5 (a)) were employed, so that

(efb)d =~ 1—p2/c3. (5.5.36)

This gave an imaginary ¢; and, correspondingly, an imaginary £,, so that it was necessary to scale
the column V,(z, %) of x(z,7) by ¢ to ensure that y(z,9) = X(z, ).

Ficure 6. The P-wave ‘radiation pattern’ produced, in the plane x, = 0 by a circular crack expanding with speed
V = 2.99 km s on the Moho interface (x; = 0), in response to an applied shear stress oy,.

Both the step function and the logarithmic arrival are plotted. The corresponding arrival for
a crack in a homogeneous medium is obtainable either by setting g® =¢, /° =0 and d = 0 in
(5.5.34), or directly from equation (5.27) of Burridge & Willis (1969). Each give the same result,
that there is only a step-function arrival, whose amplitude is proportional to

eyt T2 = V2(e2 + 48) fa2 ]},

This yields four lobes, rather similar to those shown in the lower half of figure 6, which was
obtained from (5.5.33) by interchanging «, with «_ and so on, but keeping the original value
of V. Thus, the significant change in the P-wave arrival occurs in the half-space with the slower
wave speeds. This is true even of the step-function arrival, whose curve shows a sharp corner at
the boundary of the region (5.5.35). The significance of the logarithmic arrival is exaggerated
in figure 6 for ease of plotting. The step-function locus was actually obtained by plotting those
values of x for which the amplitude of the step function arrival was + =, while the other locus was
obtained by plotting values at which the amplitude of the logarithmic arrival was + 1.
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APPENDIX. PROPERTIES OF THE RADON TRANSFORM

This appendix is similar to those in the author’s earlier papers (Willis 19714, 1972) and lists
the properties of the Radon transform that are used in the text.
The Radon transform f( p, &) of a function f(x) is defined as its integral along the line

E.x=0p.
Thus, J(p,8) = [f(x) 8(E.x~p) dx. (A1)
It follows that f(p, £) is even and homogeneous of degree —1, so that

J0p,28) = A5, 6). (A2)

Also, [£57(0:€) ap = [ f(x) 8(8 .2 —p) (5. ) v,
so that the left side is a homogeneous polynomial of degree £ in &. Equivalently, if ¢ is the unit
vector

N = g/lglﬁ

then [ (b, m) dp = Py(), (A3)
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a polynomial of degree at most £ in #. A further property relates to the support of f(p, 7). It
follows from (A 1) that

f(x)=09 r>a:>fv(p:77) =0, Ipl > a. (A4)
The properties (A 2), (A3) and (A 4) have been shown by Ludwig (1966) to be sufficient for

a function f(p,7) to define a Radon transform of a function f(x) whose support is the disk 7 < a
Finally, the inversion formula for the Radon transform is quoted as

= S, )dp
70 = =gt [ o oy A9
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